Extending Git for Feature-Oriented
Software Development

Tabea Viktoria Réthemeyer

Master’s Thesis, 23.10.2024

Chair of Software Engineering
Supervisor: Prof. Thorsten Berger

Co-Supervisor: Associate Prof. Daniel Striber

Abstract

Feature-oriented software development is an approach for managing con-
figurable software products. However, managing features and distributing bug
fixes across different variants present significant challenges, especially when
aiming to unify version and variant management.

This thesis aims to investigate whether a Git extension can assist developers
in finding and updating features across the project history. The proposed inte-
gration concept includes internal data structures stored in a separate branch
and a command-line interface to customize and utilize this information.

To achieve this, the thesis investigates three primary research questions.
First, it explores what commands a command-line interface (CLI) should pro-
vide to facilitate feature-oriented workflows that assist developers in feature
management, while reflecting the syntax typically used in Git commands. Sec-
ond, it examines how Git can be extended to support feature-oriented develop-
ment, and what integration concept enables this while ensuring that the com-
mands feel native to the user. Finally, it evaluates how the Git with Features
prototype enhances the management and traceability of features in software
development.

To answer these questions, three design research cycles were conducted,
involving literature reviews, technical analyses, and iterative prototype devel-
opments to continuously improve the concept and the tool.

The evaluation was carried out through a user study using the developed
prototype in a controlled setting. The results show that the tool enhances ac-
curacy in feature-based tasks and can speed up more complex comparison-
related ones. Although a learning effect was observed and some users initially
had reservations, the overall feedback was positive. Also, the tool allows the
migration of codebases to benefit from the new CLI commands.

I conclude that the Git extension contributes to improving feature manage-
ment and traceability in software development. Future work should focus on
optimizing the prototype based on the received feedback and extending the
concept to other areas like bug tracking, where metadata can be linked to com-
mits.

Acknowledgments

| would like to express my sincere gratitude to my supervisors, Thorsten Berger and
Daniel Striiber, for their support and guidance throughout this project. Their insight-
ful discussions about features, encouragement, and invaluable feedback greatly
contributed to the completion of this work.

| also wish to thank the doctoral students and members of the Chair of Software
Engineering for participating in the user study and for their assistance with organiza-
tional matters and camaraderie. Special thanks go to Sven Peldszus for his critical
questions and discussions during the conceptual phase of my work, and to Kevin for
answering all my questions and providing feedback on my user study design.

| am deeply grateful to Ansel Sermersheim for sharing his extensive knowledge of
fundamental software concepts and for providing resources available to him through
his vast experience. His deep understanding of Git allowed him to point me toward
subtle ideas that aligned with the fundamental concepts | aimed to implement.

Finally, | am grateful to my colleagues at Auto-Intern GmbH for participating in the
study and for their unwavering support, which allowed me to focus on writing my
thesis.

Tabea Réthemeyer, Bochum, October 2024

Contents
1. Introduction

2. Background
2.1. Gitas a Version Gontrol system 0.0
E.2. Feature-Oriented Sottware Development (FOSD)
E.5. Variability Management and Variation control systemsg
2.4. System PAlH In the Context of Installation

J. Methods
p.1. Design ocience Lyclego o o
p.2. Workilow and User Interface besign Approacn
B.o. Development of the Integration Loncepl

A. Results for User Interface and Integration Concepi
1. Workflows using Git with Features
B2 UserInterface DEeSign . . . « .« v v v v e e e e e e e e
A.5. Analyzing GIl e e e e e e e e e
B4 Git with Feafures Infegrafion Concepl

. Hesults from Git with Features Evaluation
p.1. Frototype Implementationo

b.1. Answering RQ 1|
B.2. AnsweringBQZd oo
B.3. AnsweringBQJ3o
B4 ThreaistoValidityl 0 o i i i it

A, Experiment Material

ser ostudy - Question

C. EXperiment Data

D. Additional Figures from the User Study Evaluation

E. Code Arfifacls

10
10
11
12
12

13
13
14
15
16

20
20
26
29
32

36
36
40

51
51
52
52
53

55
60
68
69
79
83

List of Figures

Exemplary nistory created rrom the integration concep{ 35

Ealli

Previous experience or participants, soried by group. Group A had

[/, Group b & pariicipants. For ithe tool Knowledge, users answereq
gither Yes or No, where Yes IS displayed as a value of 5 and No as g

Overview of correctly solved tasks showing the intluence ot tool exd

perience andcurrentsetugo 41

o>US oScore evaluation shown with respect 10 the users previous ex-

D = [43

D = R 43

Overview or average times needed, broken down by the independent

varniables of thisexperiments 45

Overview o1 average Iimes needed, broken down by the independent

fariables of this experimenty 48

[10.

Distribution of user preierences across the dirierent experience lev-

els and groups. Group A had 7 participants, and Group B had §
participants. The displayed values represent the distribufion for each
preference cateqory] 49

2.

Overview of task correciness based on Git knowledge and tool setup,

showing the proportion of correct and partially correct answers 101
2 0 D] . e e e e e e 80

3.

Lomparison ot correctness between groups A and b, highlighting how

fhe use of traditional Git and Git with Feafures affecis fask performance] 80

4

Correciness of task solutions In refation 10 programming experience

@nd tool setup, lllustrating how experience levels influence accuracy|

[15.

Impact ot reature-oriented 100! experience on task correctness, cCom-

paring outcomes between traditional Git and Git with Feafures] . . . 81

[16.

Fle chart snowing the proportion of user preierences between Group

[Aand Group B. This chart illustraies the breakdown of pariicipanis]
fool preferences betweenthetwogroups] 82

fr.

FProporiion Or user preterences by feature-oriented 100l experience,

Fartcipants were divided based on their prior experience using reature
priented 1ools. 1he chart Illusirates how these preferences vary be-

8. Proporiion of user preferences by Git knowledge. Parficipanis werg
brouped according to their level of Git knowledge, showing their pref]
erences for either Git with Features or Tradifional Gifl 83

Listings

[. Find all features presentinthecodebasg 21

E. Assessing file locations for feature authenticatiod 21

B. Tnspecting hisiory of a feature, Providing the commitidg 21

. Tnspecting authorsofafeaturd 22

b. [erminal-based interaction io identify filesforstaging 22

. l[erminal-based inferacfion 1o stage files while adding feafure infor]
MAafion e e e e e e e e e e e e 23

/. Commiifingchanges 23

B. Aboried commit due fo missing feature information 24

B. Assign feature for an existingcommi{. 24

[0. Listing information about a specificfeaturg 25

[1. Finding potential update commits forafeaturd 25

2. Applying a feature udpate withcherry-pick 26

[3. Tnvestigaiingfeafure history 26

4. Command for displaying the current changes in the working directory|
and staging area, categorized by feature] 27

5. Command for Tisting all features presentinthe project] 27

6. Command for providing detailed information about a feature, with op4
fions io display associated files, authors, branches, and feature history] 27

7. _Command for showing the differences between the working directory|
and the Tast commit for a specificfeature] 28

8. Command for displaying feafures associated with Tines in a file, with
an option fo specify a particular line number] 28

9. Command for adding files relaied 1o a feature o the staging area and
associaiing them with thefeature] 28

P0. Command for associaiing feafure informafion with an existing commit] 29

PT. Command for listing commits depending on whether they have fea]
fure informafion associated]o 29

B2, Overview of user feedback, struciured by selected fool preferencg . . 45

E3. Build file - pyproject.toml. Tn this file, all package informafion including
fhe dependencies and scripis to be insfalled are listed] 83

1. Introduction

Software engineering has developed a wide range of advanced techniques to
handle the growing complexity of software systems. Over the years, methods for
handling versions, configurations, and changes have been refined, resulting in a
variety of models and tools that provide structured management of these aspects
across the software lifecycle [5].

One approach addressing the complexity in modern software systems is
Feature-Oriented Software Development (FOSD), which organizes features as
modular, reusable components within software. This approach is closely integrated
with Software Product Lines (SPLs), where a common codebase generates
multiple product variants. These variants are defined by their feature
configurations. SPLs are widely used in industries such as automotive,
telecommunications, and consumer electronics, where the ability to customize and
vary features is crucial for product differentiation and market adaptability [, 2].
Like any other codebase, every change in an SPL produces a new, distinct version
of the software, forming a history of the project. Additionally, SPLs introduce a new
dimension beyond the historical evolution in the time domain: the variant domain.
This domain represents different configurations or products derived from the same
codebase, existing alongside the version space. Managing both dimensions
simultaneously presents unique challenges [?]. Developers often need to evolve
features within the main codebase or for specific variants, and depending on the
nature of the change, they might need to update other variants as well.

Despite the growing body of research on feature management within SPLs,
identifying and localizing feature-related code remains a significant challenge.
Although developers are aware of the correspondence between code and features
during the development process, this information is often not recorded in the
project’s history [[Z]. Consequently, it becomes challenging to retrieve feature
information later on, which can complicate maintenance and evolution tasks [10].
Existing tools, such as FeaturelDE and pure::variants, provide some level of feature
management, but they operate separately from version control, requiring
developers to synchronize data manually [15, T2]. Annotation systems that include
comments in the code can further help locating features [14] but still require
additional tooling to profit from the integration.

Motivation

Various f methods for annotating and localizing features within code have already
been developed. The next step to improve tooling support might be integrating
annotating systems for feature management into existing into a commonly used

version control system. As version control systems like Git already track all code
changes, associating those changes with specific features could aid with the
location, tracking and retrieval of features. Currently, this concept is not supported
in version control systems [12] even though it would eliminate the need for
developers to manually annotate code with feature information or rely on external
tools.

My hypothesis is that by extending Git to store and manage associations between
code changes and features, developers could not only track feature-specific
changes but also gain insights into feature evolution, making it easier to update and
maintain variants across SPLs. This could significantly reduce the time and effort
spent on manual feature tracking and provide a seamless integration of variant
management into the development workflow.

Problem Statement

However, it remains unclear how the extension of Git, called Git with Features, will
be structured and whether it will offer measurable benefits to developers. As this
idea has not been explored in depth, there is limited knowledge about the
workflows and support developers would need to manage features in Git.
Moreover, integrating feature management into Git poses technical challenges,
such as how to store, retrieve, and associate feature information with code
changes without affecting Git’s performance or altering its core functionalities.
Without a practical implementation and empirical evaluation, the potential
advantages of this approach remain speculative.

Research Questions

To evaluate whether the presented approach of Git with Features is feasible and
beneficial for developers, the following research questions arise. First, the structural
requirements for an extension in terms of the user interface need to be known.

Research Question 1: What commands should a command-line interface pro-
vide to facilitate feature-oriented workflows that assist developers in feature man-
agement, while reflecting the syntax typically used in Git commands?

Then, the technical possibilities of how an extension can look like and what
conceptual approach could be possible need to be explored.

Research Question 2: How can Git be extended to support feature-oriented de-
velopment, and what integration concept enables this while ensuring that the com-
mands feel native to the user?

Finally, the question arises of how this theoretical idea performs in practice. First, it
must be demonstrated whether the proposed implementation concept can be
feasibly translated into a functional and usable research prototype. Once the
prototype is developed, its impact on developers’ daily workflows needs to be
evaluated to determine if it indeed simplifies feature-based development tasks.

Research Question 3: How does the Git with Features prototype enhance the
management and traceability of features in software development?

Objectives

By answering these research questions, the following objectives are expected to be
achieved: The primary objective of this thesis is to design, implement, and evaluate
a Git extension that integrates feature-oriented principles into the version control
process. The secondary objectives include:

« Defining workflows and data structures necessary for managing feature
evolution within Git.

* Implementing a research prototype of the Git extension to demonstrate the
feasibility of the solution.

» Designing and conducting an experiment, through a user study, to compare
traditional Git workflows with feature-based workflows in terms of usability,
learning curve, and efficiency.

» Developing an example project to demonstrate the practical applicability of
the Git with Features tool.

Structure of the Thesis

Based on these ideas and the planned execution, the structure of the thesis is
organized as follows: section 2 provides an overview of Git, variability
management, and other relevant background information. Section @ outlines the
methodological approach used to address the research questions, detailing the
steps and scientific methods applied throughout the thesis. The results of these
methods, including the integration concept and evaluation outcomes, are presented
in section @ and section 8, with a thorough discussion of the findings and answers
to the research questions provided in section B. Finally, section @ summarizes the
key findings, addresses limitations, offers an outlook on future work, and concludes
with a personal reflection on the overall process.

2. Background

This section provides background information on key concepts related to this
thesis, including variability management, SPLE, and version control systems, with
a particular emphasis on Git. Understanding these topics is critical for addressing
the challenges discussed in later chapters, especially in relation to the proposed
extension of Git for feature-based development.

2.1. Git as a Version Control System

Version control systems solve the problem of tracking and managing changes in
software projects. As software evolves and bugs are introduced, it becomes crucial
to keep track of different code versions to allow for easy comparison and reverting
to previous states. Multiple versions of the software can exist simultaneously, with
each change creating a new version that needs to be recorded and searchable. Git
plays a significant role as a widely used distributed version control system that
helps manage these versions efficiently.

One of the key challenges in using Git is dealing with merge conflicts, which can
arise when multiple developers work on the same part of the code. Effective
resolution strategies are necessary to ensure smooth collaboration. Git’s approach
to storing versions relies on a combination of snapshots and deltas, providing both
flexibility and efficiency. It is the most prevalent version control system worldwide,
primarily because of its distributed nature, allowing developers to work on local
repositories and synchronize changes remotely. Core concepts in Git include the
staging area, commit history, and branching, all of which are essential for effective
version management. However, challenges like merge conflicts, branching
strategies, and synchronizing local with remote repositories remain common issues
that developers face.

2.1.1. Mental Model

The idea and development of Git originated from the need to manage the Linux
Kernel's codebase effectively, as there was insufficient software to handle the
project’s scale and complexity. Linus Torvalds initiated the development of Git after
announcing on the Linux Kernel Mailing List that he would be offline to create a
new source control system®. Within a few days, he released a work-in-progress
version of Git, with the first commits being made manually?. Torvalds emphasized
that Git should be seen primarily as a distributed filesystem rather than a traditional

! https://1kml.iu.edu/hypermail/linux/kernel/0504.0/1540.html
2k1t‘u:,ps ://1kml.iu.edu/hypermail/linux/kernel/0504.0/2022.htm]

10

https://lkml.iu.edu/hypermail/linux/kernel/0504.0/1540.html
https://lkml.iu.edu/hypermail/linux/kernel/0504.0/2022.html

version control system®. This perspective underscores its design philosophy of
efficient data storage, retrieval, and distribution, aligning with Unix principles.

2.1.2. Core Concepts and Operations in Git

Git is a distributed version control system that enables developers to efficiently
track and manage changes in software projects. Unlike traditional version control
systems, Git operates on a decentralized model, allowing each developer to have a
complete copy of the repository, including its full history?. Core concepts in Git
include the staging area, where changes are prepared before committing, and
commits, which capture snapshots of the project’s state along with metadata such
as author and timestamp. Another fundamental concept is branching, which
allows developers to work on multiple features or fixes simultaneously without
affecting the main codebase®.

Git's merge and rebase features provide strategies to integrate changes from
different branches, ensuring that collaboration remains smooth and conflicts are
minimized. Additionally, Git emphasizes fast, local operations by treating data as a
series of snapshots rather than a set of changes (or deltas)®. This design choice,
combined with robust branching and merging capabilities, allows teams to work
efficiently even on large-scale projects. For a more detailed understanding, refer to
the official Git documentation?.

2.2. Feature-Oriented Software Development (FOSD)

Software Product Lines (SPLs) represent a strategy for creating multiple variants or
configurations of a software product that are tailored to specific customer needs.
SPLs can be managed through different approaches, including the clone-and-own
method, where separate versions of the software are manually adapted, or
integrated platform approaches that allow for shared development. A feature in this
context is defined as a distinct block of functionality, often directly visible to the
user. Managing features effectively involves tracing their presence across different
variants and ensuring they are properly documented, sometimes through metadata
embedded directly in the code, as discussed by Schwarz et al. [16].

3https://lkml.iu.edu/hypermail/1inux/kernel/0504.1/0212.htm1, https://1lkml.jiu.

edu/hypermail/linux/kernel/0504.1/0190.html
4https://git—scm.com/book/en/v2/Getting—Started-About—Version—Control
5https://git—scm.com/book/en/v2/Git—Branching—Branches—in—a—Nutshell
6https://git—scm.com/book/en/v2/Git—Internals—Plumbing—and—Porcelain
7https://git—scm.com/doc

11

https://lkml.iu.edu/hypermail/linux/kernel/0504.1/0212.html
https://lkml.iu.edu/hypermail/linux/kernel/0504.1/0190.html
https://lkml.iu.edu/hypermail/linux/kernel/0504.1/0190.html
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain
https://git-scm.com/doc

2.3. Variability Management and Variation Control Systems

Variability management refers to the techniques and processes used to handle and
control the differences between product variants within a software product line.
Various operators have been identified for managing these variations, such as
those described by Linsbauer et al. [11]. However, variability management faces
several challenges, including the need for efficient traceability, consistency, and
integration with existing development tools. Current tool support for variability
management focuses on tasks like feature selection, variant configuration, and
automated builds, with tools like FeaturelDE and configuration management
systems playing key roles.

2.4. System PATH in the Context of Installation

The installation of software adheres to established conventions for the storage of
executable code and data. While discrepancies exist across operating systems, a
unifying concept is the use of a PATH environment variable, which lists directories
that the operating system scans to locate programs. In the event that a program is
located within one of the previously mentioned directories, it is possible to access
said program via the command line without the necessity of providing the complete
file path.

This enables users to execute programs via straightforward commands, as the
system searches directories for pertinent executables. It is necessary for the
directory in which new software is to be installed to be either in the PATH or for the
user to be informed of the procedure for adding it. In the absence of this
configuration, the software will not function when executed via the command line,
as the command will not be recognized.

12

3. Methods

In the introduction, the research questions that guide this thesis are presented.
This section outlines the methods used to address those questions, explaining the
rationale for each approach and detailing their implementation. It also discusses
the expected outcomes of the selected methods. The results are presented in the
following chapters: the first focuses on the conceptual work, and the second on the
practical evaluation.

3.1. Design Science Cycles

Since the practical value of the proposed concept will be determined by the users
themselves, this work is fundamentally based on Design Science Research (DSR).
As outlined in Constructive Master’s Thesis Work in Industry: Guidelines for
Applying Design Science Research([49]), DSR follows an iterative approach for
refining tools or systems through user interaction and feedback. The process
begins with developing an initial prototype, followed by conducting user tests to
gather both qualitative and quantitative data. These tests evaluate how participants
engage with the system, measuring usability, task performance, and user
satisfaction. Based on this feedback, the prototype is iteratively improved,
enhancing its functionality and alignment with user needs and system
requirements.

Below, it is explained how this method is used to develop the initial prototype for Git
with Features and get the first iteration of user feedback.

Cycle 1 Workflow and User Interface Description The primary goal of this cycle is
to define a workflow model and user interface that allow feature-oriented
work within Git. By conducting a literature review and comparing with existing
Git commands to maintain a consistent structure, potential feature-oriented
workflows are proposed and a command-line based user interface is defined.

Cycle 2 Integration Concept Within this cycle, the technical integration of the
developed user interface is evaluated. Also the internal data handling and
storage model is mapped out. Based on this, an integration concept for the
implementation of the Git with Features extension is described.

Cycle 3 Prototype Implementation and User-Centered Evaluation Finally, the
proposed concept is assessed. To get structured feedback and insight into
the improvements made compared to what is called here traditional usage of
Git, a research prototype will be given to the users together with a test
scenario and questions. The answers are used to derive potential
improvements for the tool and quantitatively describe its impact.

13

3.2. Workflow and User Interface Design Approach

First, the methods used to define feature-oriented workflows and the corresponding
user interface for the Git with Features extension are outlined. These workflows
guide the design of the CLI, and the results are later used to derive an answer for
research question .

3.2.1. Systematic Literature Analysis

As feature-oriented development has been a research focus for some time, there
already exist various literature on feature management. Conducting a systematic
literature review with a focus on common operations and tasks for developers can
help to create a set of workflows that feature-oriented Git should support. To
perform a systematic literature review, as explained by Kitchenham and
Charters([8]), the key steps involve identifying relevant research, selecting
databases, defining inclusion and exclusion criteria, and evaluating the selected
papers [8]. The selection of relevant papers is made in collaboration with the
supervising chair, based on their knowledge of the subject. The list of papers is
included in the results. Based on the discussed challenges and recurring
operations required when working on features, the scenarios of the workflows are
selected.

3.2.2. Workflow Description

The workflow descriptions are developed by integrating both existing Git commands
and new commands introduced by the Git with Features extension. Each workflow
outlines how users interact with the command line to perform feature-related tasks,
using scenarios identified through the literature review. Based on my prior Git
experience, the workflows reflect feature management activities described in the
selected papers. These workflows serve as a basis for designing the user interface
and structuring the interactions between developers and the tool to ensure that the
Git with Features extension supports feature management.

3.2.3. User Interface Description

The workflows derived from the analysis are translated into a set of specific
command line interface (CLI) commands for the prototype implementation. Each
command is defined with associated flags, a description of its functionality, and the
expected output. The listing of these commands provides a specification of the
user interface, which serves as the basis for the implementation of the Git with
Features extension.

14

3.3. Development of the Integration Concept

The integration concept outlines how the derived user interface can be
implemented through two key components. First, it explains the internal data
models and handling mechanisms that make up information management. Second,
it details the technique for integrating the new commands into Git’s existing
architecture. This concept provides a technical foundation for extending Git by
addressing the structural requirements necessary for feature management and
responding to research question B. The design of the integration concept is done
by evaluating the technical capabilities of Git and proposing data structures that
build on top of Git’s object model to store and retrieve all the information needed.

3.3.1. Technical Analysis of Git

The objective of this analysis is to evaluate Git’s internal structure and identify
extension points that allow the integration of feature-oriented functionality without
modifying Git’s source code. To achieve this, a review of Git's documentation is
conducted, focusing on its storage model (commits, trees, and blobs) and
extension mechanisms (hooks and subcommands). An existing Git extension,
git-annex® is also analyzed to understand best practices for extending Git without
breaking its core functionality. These tools demonstrate potential approaches to
data storage and command integration, providing insights for the design of the Git
with Features extension.

The result of this analysis is a structural understanding of Git’s data model and an
overview of extension mechanisms and their use cases. This lays the groundwork
for the integration concept, ensuring that feature management can be implemented
in a way that is consistent with Git’s architecture.

3.3.2. Development of the Integration Concept

Based on the results of both the technical analysis of Git and the previously defined
Ul, an integration concept for Git with Features is derived. The integration concept
describes, in a technology-agnostic way, how the Git with Features extension can
be implemented by integrating the Ul with Git’'s underlying architecture. It builds on
both components by introducing a model for storing and accessing feature
information within Git, which is necessary for the new subcommands.

The insights gained from the Git analysis inform the design of the internal data
structures, while the results of the Ul design ensure that these structures can be
interacted with through subcommands. This concept outlines how feature-related

8 https://git-annex.branchable.com/

15

https://git-annex.branchable.com/

information is stored, retrieved, and updated in Git, defining both the internal data
handling mechanisms and the user-facing commands required for interaction.

As a result, the integration concept serves as an implementation guideline for the
Git with Features prototype, including how feature information is stored, retrieved,
modified, and displayed.

3.4. Evaluation Methods

Finally, it describes how the results for answering the last research question B can
be provided. Previous research has focused on requirements. Now the actual
impact of the tool on the developer workflow is evaluated.

This section describes the methodical approach for setting up the test environment.
This includes the development of the prototype as well as all materials necessary
to conduct the experiment. The objective of the evaluation is to test whether the
proposed Git with Features extension leads to a measurable improvement in
workflow efficiency compared to standard Git.

3.4.1. Research Prototype Implementation

To ensure the technical feasibility of implementing a prototype based on the
integration concept from research question B, a research prototype will be
developed according to the proposed concept.

This section outlines the approach methodically during the implementation
process, including technical and organizational decisions. These relate to the
choice of programming language, development frameworks and libraries. The
result is a research prototype that can be distributed as a single-file package
containing feature-oriented Git commands without additional setup.

A prototype is needed to test the usability of the tool. The first version will be built
and then evaluated to guide further technical requirements and improvements.

Selection of Programming Language One of the first choices was regarding
the programming language to be used as it defines the ecosystem available during
development. The decision was made to utilize Python as the programming
language based on the following considerations.

First, Python was selected for its ability to simplify installation. As a
platform-independent scripting language, it allows for easy distribution without
requiring separate binaries for different operating systems.

Second, Python’s extensive ecosystem offers numerous libraries that are
well-suited for the project, including robust command-line and Git interaction tools.

16

Finally, prior familiarity with Python and its support for building command-line tools
made it the most suitable choice for this prototype.

Selection of Libraries To develop the command-line interface and interact with
Git repositories, Typer® and GitPython™ are chosen as external libraries.

Typer was chosen for its decorator-based syntax for command creation and it's
provision of automatic input validation, improving both usability and maintainability.
It also supports nested commands, which is important for the structure of this
project.

For Git interaction, GitPython was chosen because of its comprehensive
functionality, allowing for the execution of all Git operations by design. Its flexibility
in handling Git commands make it a candidate for this project.

Packaging and Distribution The project is packaged using a pyproject.toml
configuration, based on PEP 518™, to handle the build and distribution process.
This setup allows the tool to be bundled with executable scripts, so it can be
installed directly into the user's command-line environment without requiring
additional steps. The tool is packaged into a .wh1l (wheel) file, which users can
install via pip, making the process identical to installing any other Python library.
The configuration also manages dependencies, ensuring that all necessary
packages are automatically installed during the setup.

3.4.2. User-based Experiment Design

With the research prototype completed, the next step is to create an experiment to
gather feedback on the Git with Features integration.

The purpose of the experiment is to evaluate the effectiveness of the Git extension
in improving developer workflows. Following the guidelines outlined by [B], a user
study was designed to gather both quantitative and qualitative data. The study
compares key performance metrics such as task completion time, correctness of
results, and user satisfaction between the standard Git workflow and the Git
extension with feature support.

The experiment employs a within-subject design, as outlined by Charness,
Gneezy, and Kuhn ([4]), which is particularly suitable for comparing conditions with
the same group of participants. This approach reduces variability caused by
individual differences, allowing for a direct comparison between the two workflows.
Each participant completes the same set of tasks using both tools, with the order of

9h‘ctps ://typer.tiangolo.com/
1Ohttps ://gitpython.readthedocs.io/en/stable/
1 https://peps.python.org/pep-0518/

17

https://typer.tiangolo.com/
https://gitpython.readthedocs.io/en/stable/
https://peps.python.org/pep-0518/

tool usage randomized to mitigate learning effects. This ensures that performance
differences are attributable to the tools themselves rather than external factors.
Data collected during the experiment includes task completion time, task accuracy,
and user satisfaction. These metrics provide a basis for analyzing the impact of the
Git extension on developer efficiency.

Hypotheses and Variables The following hypotheses are tested in the
experiment:

1. Developers complete tasks faster using the Git extension (reduced task
completion time).

2. Developers prefer the Git extension over the standard Git workflow while the
usability of both systems is comparable (higher tool preference).

3. Developers make fewer mistakes with the Git extension (increased task
accuracy).

The independent variables include the tool used, distinguishing between the
standard Git and Git with feature support. Additionally, the developers’ experience
with Git and programming is assessed on a scale from 1 to 5 to account for varying
levels of expertise as well as whether they already used other feature-oriented
tools. Participants are also divided into two groups, which determines the order in
which they use the tools, helping to reduce learning effects.

The dependent variables that reflect the outcomes of the experiment include the
time it takes participants to complete each task, measured in seconds, and task
accuracy, which assesses whether tasks were completed correctly. Task accuracy
is manually evaluated after the experiment, with partial correctness also being
noted. For example, if participants only partially complete a task such as
identifying only some of the required files or providing only the name instead of both
the name and email address a score of 1 is assigned to reflect partial correctness.
Usability is captured through the System Usability Scale (SUS), administered
immediately after each task to measure user satisfaction and ease of use, as
shown by Brooke([3]). After completing all tasks, participants indicate their
preferred tool, providing insights into overall tool preference.

Questionnaire The questionnaire is designed to ensure comparability between
the standard Git workflow and the Git extension with feature support. The links to
the questionnaires as well as an overview of the questions is given in appendix B.
For both tools, participants answer identical sets of questions, focusing on similar
tasks such as identifying feature authors, locating files associated with features,

18

and comparing branches. This parallel structure ensures that the performance
metrics (time, accuracy, and usability) can be directly compared across the two
tools. Additionally, questions are designed to capture both objective data (e.g., task
accuracy) and subjective feedback (e.g., tool preference), providing an overview of
each tool’s impact on the developer’s experience.

Experiment Execution The experiment is conducted asynchronously, allowing
participants to complete the tasks at their own pace and in their own environment.
At the beginning of the experiment, participants are informed about the study’s
purpose and asked for their consent to participate. Participation is entirely
voluntary, and participants have the right to withdraw from the study at any time.
Participants are selected from a pool of students, colleagues, and acquaintances to
ensure a range of experience levels with Git. Before beginning the tasks,
participants are asked to complete an initial survey that collects information about
their experience with Git and feature-oriented development. This information helps
to account for varying levels of expertise in the data analysis.

Each participant is provided with a set of accompanying materials, including task
descriptions, a Git repository with the necessary setup, and documentation
explaining how to use both the standard Git workflow and the extended Git with
feature support. These materials, listed in appendix B, ensure that the experiment
is self-contained and that participants have all the information needed to complete
the tasks without additional guidance. The asynchronous nature of the experiment
allows participants to work through the tasks independently, while still adhering to
the standardized conditions required for reliable data collection.

Data Collection and Analysis For the analysis, the focus will be on visualizing
the collected data through graphs to illustrate the impact of the Git extension
compared to the standard Git workflow. The collected data, including task
completion time, correctness, and usability scores, will be broken down by
independent variables such as tool usage, participant experience, and group
assignment. Basic statistical measures, such as means and standard deviations,
will be calculated to compare performance across these variables. Usability scores
from the SUS questionnaire will also be analyzed and compared between the two
conditions. Qualitative feedback from participants will be categorized and
summarized to provide additional context to the quantitative results.

19

4. Results for User Interface and Integration Concept

Building on the methodological work outlined previously, this section presents the
results of the theoretical groundwork necessary for defining the Git with Features
integration. The presented results address the research questions fl and 2,
focusing on the development of workflows, the design of the user interface, and the
conceptual integration within Git. These elements form the basis for the
subsequent implementation and evaluation, providing the framework for how
feature management can be incorporated into Git’s existing structure.

The workflows outlined below describe how developers can interact with features
using new commands and operations. The integration concept defines how
feature-related data is stored using a dedicated branch, with scripts that extend
Git’'s current command set. The results presented in this chapter serve as the
foundation for the practical implementation discussed in the next chapter, where
the prototype and its evaluation will be further explored in the broader context of
developer workflows and usability.

4.1. Workflows using Git with Features

Feature-oriented development requires systematic management of features
throughout the software lifecycle, namely their implementation, modification and
tracking. Integrating feature management into version control systems can
enhance traceability and supports consistent development practices [10, A7]. This
section presents a series of workflows demonstrating how Git with Features aims to
aid with these tasks. Each workflow includes command outputs and explanations
of how the output is utilized. The work is based on the papers “Concepts,
Operations, and Feasibility of a Projection-Based Variation Control System”,
“Maintaining Feature Traceability with Embedded Annotations”, “Feature-oriented
variability management in product line engineering”, “A Common Notation and Tool
Support for Embedded Feature Annotations”, “Concepts of Variation Control
Systems” and Feature-Oriented Software Product Lines([1Z, 7, 10, A6, A3, A]]).

4.1.1. Understanding the Feature Codebase

Before developers can start to implement features or apply updates, they need to
locate all relevant locations of the feature to understand its scope and decide
where to place or revise code. They may also need to retrieve information about
features for decision-making and collaboration in the planning process with their
team or when deciding how a new product might be structured. The following
commands and outputs aim assist in any process that profits from knowledge
about feature locations and their evolution.

20

Listing 1: Find all features present in the codebase

$ git feature-list
Available features:

- authentication

- payment-processing

— user—profile
Once the feature of interest is found based on the output of listing], the steps
shown in listing B help in understanding where, when and by whom it was
developed.

Listing 2: Assessing file locations for feature authentication

$ git feature-info authentication ——files
Files associated with ’authentication ’:
- src/auth/login.py
- src/auth/logout.py
— src/auth/utils .py

Listing 3: Inspecting history of a feature, Providing the commit ids

$ git feature-info authentication —--log
Recent commits for ’authentication’:
- mno7890: Improved password hashing algorithm
- abc1234: Implemented login functionality

$ git show mno7890
commit mno7890
Author: Bob <bob@company.com>
Date: Mon Apr 01 11:12:13 2024
Improved password hashing algorithm

The one used before had a problem.
diff ——qgit a/src/auth/utils.py b/src/auth/ utils .py
< diff of the commit >

To ask questions about a feature and decision made in its evolution, it can be
helpful to know how contributed to it. Listing @ shows that for the feature of interest,
two authors with a total of 8 commits are known.

21

Listing 4: Inspecting authors of a feature

$ git feature-info authentication --authors
Top contributors to “authentication’:
— Alice Smith (5 commits)
— Bob Johnson (3 commits)

With these information on hand, the developers can plan and outline their work
without needing to manually search and grep the commit history of the project.

4.1.2. Staging Feature Changes

After the implementations are made, the next step is to add these changes to the
codebase. Modifying the codebase to implement or update features is a central
activity in software development.

Although there is a conceptual distinction between modifying an existing feature
and implementing a new one, this difference does not affect the workflow for the
feature association. In both cases, the same steps are followed to link changes to
features, as no preparatory work is needed before this association can be made. In
the workflows described below, the staging process is added with an additional
step of associating code changes with their corresponding features. Two variants
are shown, one adding the feature while preparing the commit, the other for using
existing commits. The workflow differs only slightly from the current common
practice of using git add . && git commit.

Adding feature information before commiting The first variation shows how
the feature information are integrated in the staging process. When this workflow is
used, additional checks can be put in place to ensure no commits without feature
information.

1. Analyze and stage changes Before staging changes, the developer lists the
overview of the current changes. Based on the output, they decide which
files to add to staging area. In listing B, a possible output for the workflow is
shown, including a check from the developer.

Listing 5: Terminal-based interaction to identify files for staging

$ git feature-status
Unstaged changes:
src/main.py [add]
src/operations.py [subtract, add]
src/ utils .py [core]

22

2. Annotate with Feature Information: The developer associates the staged
changes with a feature using:

Listing 6: Terminal-based interaction to stage files while adding feature information

$ git feature-add --feature core src/utils.py
Feature ’'core’ associated with staged changes.

$ git feature-status

Unstaged changes:
src/main.py [add]
src/operations.py [subtract, add]

Staged changes:
src/utils .py [core]

This output confirms that the staged changes are now linked to the specified
feature. Internally, the command prepares the commit message with feature
information and updates the current set of staged features.

3. Commit the Changes: Finally, the developer commits the changes to
describe their changes and add them to the history. The commit message
includes the feature name, and the output summarizes the changes. This
association aids in tracking feature-specific modifications in the project
history.

Listing 7: Committing changes
$ git commit
[main abc1234] Implemented new functionality for
core
Feature: core
1 file changed, 50 insertions(+), 10 deletions(-)

23

Attempted Commit Without Feature Information

If the developer attempts to commit without associating features, the system
enforces a check.The commit is aborted to ensure that all changes are linked
to a feature, maintaining consistency in the project’s feature traceability.

Listing 8: Aborted commit due to missing feature information
$ git commit
Error: No feature associated with staged changes.

Please use ’'git feature-add’ to associate changes
with a feature.

Adding feature information after commiting It is also possible to assign
feature information after committing. This might be useful to not interfere with
workflows developers already use. Instead, after the commit process is finished,
the feature association is added retroactively. Just like in the previous example, the
user selects and stages changes as shown in listing B. Even though they did not
associate feature information, they will not get an error. If users prefer this
workflow, they would not setup the check for existence of feature information. In
listing B, the process of adding feature information to a commit is shown.

Listing 9: Assign feature for an existing commit
$ git commit
[main abc1234] Implemented new functionality for core
Feature: core
1 file changed, 50 insertions(+), 10 deletions(-)

$ git log -n 1 ——oneline
abc1234 (HEAD -> main) Implemented new functionality for
core

$ git feature-commit core abc1234

4.1.3. Updating a Feature Across Variants

Developers work on different parts of the code, maybe even in different product
variants. If customers report a bug, they might hot-fix it within the product.
However, the affected feature might also be part of other variants. Hence,
developers need to find all potentially affected variants and apply the same update,

24

maybe with minor modifcations, to them. The workflow for updating a feature from
another variant is as follows:

1. List Branches with the Feature: This output lists all branches where the
feature is present, helping the developer identify the source branch for the
update.

Listing 10: Listing information about a specific feature

$ git feature-info —-feature authentication —-branches
Branches containing ’'authentication’:
— main
- develop
- release-v1.0
— product-c
— product-h

From the naming conventions of the branches, developers probably know
which branches contain shipped product variants. For the purpose of the
workflow, we assume that this is possible. Even if the setup were slightly
different, all code versioned in Git is part of a branch if it is part of the project
history.

2. ldentify Missing Commits: The output shows commits related to the feature
that are present in the ‘develop’ branch but missing in the current branch.

Listing 11: Finding potential update commits for a feature

$ git status
On branch product-h
nothing to commit, working tree clean
$ git feature-diff ——feature authentication —-branch
product-c
Commits in ’product-c’ not in ’product-h’ for
authentication ’:
- commit ghi9012: Fixed issue with user login
$ git show ghi9012
commit ghi9012
Author: Alice <alice@company.com>
Date: Tue Apr 02 15:09:23 24

Fixed issue with user login

Error occured due to \dots
<diff >

25

3. Apply the Missing Commit: Once the interesting commits to apply in the
branch are identified, users can resume to traditional Git usage by
cherry-picking the commits as shown in listing 2. This applies the commit to
the current branch, updating the feature accordingly. It would also be
possible to partially checkout this commit in the other project to explore and
test. However, this is already part of the core of Git and will not be altered by
the Git with Features concept just yet.

Listing 12: Applying a feature udpate with cherry-pick
$ git cherry-pick ghi9012
[current-branch jkI3456] Fixed issue with user
login
1 file changed, 5 insertions(+), 2 deletions(-)

4. Verify the Update: The output confirms that the feature has been updated
with the new commit.

Listing 13: Investigating feature history

$ git feature-info authentication —--log
Commit history for ’'authentication’ on ’product-
h’:

- jkI3456: Fixed issue with user login
- def5678: Added additional test to find
future bugs in CI

4.2. User Interface Design

The user interface is developed based on the workflows, listing all subcommands
and flags used and providing an explanation for them. The commands are divided
into three categories, covering both analysis and modification tasks:

 Retrieving feature information: Commands that allow users to gather and
view data about existing features in the project.

+ Retrieving current workspace information: Commands used to list current
changes and prepare the next feature-oriented commit.

» Updating features: Commands to apply new commits, update features, or
merge changes from feature-specific branches.

26

4.2.1. Commands to read the current workspace status

When deciding which code changes are going into the next commit, developers

need to have an overview of changes. This command is similar to git status,

however it lists assigned features as well. This command can potentially be

extended when using concepts of feature-anntoation[Z], as they can be parsed for

additional information.

Listing 14: Command for displaying the current changes in the working directory and
staging area, categorized by feature.

$ git feature-status —-help

Usage: git feature-status [OPTIONS]

Displays the current changes in the working directory and staging
area, categorized by feature.

4.2.2. Commands that read general information

These commands are used to read out all feature associations stored in the history. With
the help of these commands, users can compare feature logs across different branches
and find potential commits that need to be propagated to other variants as well.

Listing 15: Command for listing all features present in the project.

$ git feature-list —-help
Usage: git feature-list

Lists all features present in the project.

Listing 16: Command for providing detailed information about a feature, with options
to display associated files, authors, branches, and feature history.

$ git feature-info —-help
Usage: git feature-info [OPTIONS] <feature -name>

Provides detailed information about a feature, including files and

authors.

Options:
—files List all files associated with the feature.
——authors Show authors of commits related to the feature.
——branches Show all branches where the feature is present.
—log Display the history of the feature.

27

Listing 17: Command for showing the differences between the working directory and
the last commit for a specific feature.

$ git feature-diff —help
Usage: git feature-diff [OPTIONS] <feature —-name>

Displays the differences between the working directory and the
last commit for a specific feature.

Listing 18: Command for displaying features associated with lines in a file, with an
option to specify a particular line number.

$ git feature-blame —-help
Usage: git feature-blame [OPTIONS] <file >

Displays features associated with lines in a file.

Options:
—Iline <number> Show features associated with a
specific line number.

4.2.3. Commands related to associating feature-information

To be able to retrieve feature information, there need to be mechanismns to update them
as well. The following commands show options to add feature information either before or
after creating a commit. Also, helper commands are shown that help with retroactively
migrating a history. They display commits that already have or do not have a feature
assigned to them yet.

Listing 19: Command for adding files related to a feature to the staging area and
associating them with the feature.

$ git feature-add —-help

Usage: git feature-add [OPTIONS] --feature <feature -name> [<files
>...]

Adds files related to a feature to the staging area and associates
them with the feature.

Options:

—-staged Associate only the changes that are currently
staged.

28

Listing 20: Command for associating feature information with an existing commit.

$ git feature —commit —-help
Usage: git feature —commit [OPTIONS] [FEATURE NAME] [COMMIT_ID]

Associates feature information with an existing commit.

Listing 21: Command for listing commits depending on whether they have feature
information associated.

$ git feature—-commits —-help
Usage: git feature —-commits [OPTIONS]

List commits depending on whether they have feature information
associated.

Options:
——missing Display all commit IDs that are not related to
a feature yet.

4.3. Analyzing Git

As explained in B, a technical analysis of Git is conducted to gain insights into the
storage model and extension possibilities. Below, it is explained how Git stores
information and which extension points were found, completed by the example of
git-annex which demonstrates the feasibility of Git extensions. The next part will
then outline the integration concept derived from these findings.

This chapter is heavily influenced from discussions with Ansel Sermersheim
who provided insight into the fundamentals of Git as well as provisioning ref-
erences to the early ideas of Git that helped to thoroughly understand the
mental model of the software.

4.3.1. Git Storage Model

This subsection presents the results of the technical analysis of Git’s storage
architecture, as outlined in section B3 .Understanding Git’s internal storage
structure is essential for designing the storage model of the integration concept.
Git employs a content-addressable storage system, where each object, such as
files, trees, and commiits, is identified by a unique SHA-1 hash. This hash also
serves as the filename, ensuring that objects with identical content generate the

29

GitObject

sha:string
type:siring
sizeint
contentbytes

=] U

Blob Tree —{—————trze

1 Commit Tag

+name 0. +Hype="iree' +message name:string
+mode +author type="tag'

+type="blob’ +..
+Hype="commit’

T T T
0.= 1 0.*

suhtnaeg I—\:ommit—l

Figure 1: ERM Model of the intention to associate features with commits

same hash, thereby preventing duplication. Git organizes these objects into four
types™ : blobs (file contents), trees (directory listings), commits (pointers to trees
and metadata), and tags (annotations for specific commits). As shown in figure i,
the core objects in Gitblobs, trees, and commitsare interlinked to maintain version
histories.

The advantage of the SHA-filename approach is that identical content is stored
only once, contributing to Git’s efficiency in managing large codebases as identical
content is easily identified. Additionally, objects can be easily retrieved by their
hash values, streamlining access and versioning operations.

4.3.2. Options for Extension

No Fork of Git

Despite the initial idea of forking Git and creating a Git with Feature variant,
this approach was swiftly dismissed. This decision was influenced by the
observation that Git can be extended without source code modifications, and
maintaining two Git installations would undermine the objective of integrating
with an existing tool to facilitate the adoption of feature-centric workflows at
the developer level.

As developers want to adjust their tools to their own needs, Git supports several
custom configurations done in the git config level. This can be done both globally
or specific for a certain repository. In this config, users can set aliases for new

12https://github.blog/open—source/git/gits—database—internals—i—packed—object—store/

30

https://github.blog/open-source/git/gits-database-internals-i-packed-object-store/

commands or configure their own hook path. However, the config does not allow to
add new data to retrieve information from. It is a config point useful in the setup
process and when it comes down to refining the commands however. Git provides
several customization options that allow developers to tailor the tool to their specific
needs. To analyze which specific problem these options address to later decide
what to use in the integration process, these three options are explored:

+ Git Config
» Git Hooks

* Git Subcommands

Git config The Git config system allows users to set configuration variables that
control Git's behavior. These settings can be scoped globally or per repository,
providing flexibility in how Git operates in different contexts. Developers can create
aliases for complex commands, adjust default behaviors, and configure external
tools integration. While powerful for setup and refinement, Git config does not
support adding new data sources for information retrieval. The settings for Git
config can be done via the command line.

Git Hooks Git Hooks™ are callback scripts triggered at specific points in the Git
workflow, such as before a commit or after a merge. These hooks allow users to
automate tasks like enforcing policies, validating code, or integrating with other
systems. Each hook is tied to a predefined event with a specific name, such as
pre-commit or post-merge, dictating when the script is executed. Only one script
can be associated with each hook, so users need to customize the script if multiple
tasks are required. While the scripts are flexible in their content and can execute
any commands, they must be valid shell scripts or executable files compatible with
the system’s terminal.

Git Subcommands Git allows the addition of custom subcommands by
recognizing scripts prefixed with git- in the system’s PATH. This mechanism
enables developers to create new commands that integrate seamlessly with Git’s
existing command set without modifying the core Git installation. These scripts can
perform a wide range of tasks, from automating workflows to integrating with other
tools, providing a powerful way to extend Git’s functionality. Similarly to Git Hooks,
the content of the script can contain any executable code for the operating system.
Also, the location and naming of the script play an important role.

Bhttps://git-scm.com/book/ms/v2/Customizing-Git-Git—Hooks

31

https://git-scm.com/book/ms/v2/Customizing-Git-Git-Hooks

4.3.3. Case Study: git-annex

While searching for examples on how Git is extended and what ideas other
developers have used, | found the tool git-annex™ . git-annex is built on top of Git
and also primarily command line based, hence being interesting to analyze. It
enables users to handle large files by storing metadata about the file versions and
their locations. By using this metadata, git-annex can track files stored across
different locations, such as external drives or cloud storage services, without
overloading the Git repository with large file content™.

One of the core concepts of git-annex is its use of a separate branch, git-annex,
which is dedicated to tracking metadata rather than file content. This branch
operates independently from the main project history. Additionally, git-annex
introduces custom Git commands (e.g., git annex add, git annex sync), showing
how Git's subcommand framework can be extended for specific use cases™.
Although the use case of git-annex is different from traditional version control tasks,
it demonstrates how Git can be used to solve meta-data related-problems as well
as that extending Git is doable.

4.4. Git with Features Integration Concept

The objective of the integration concept is to propose a possible answer to I,
explaining how the Git with Features commands can be added and how the
storage and retrieval of feature-related information can be accomplished. Building
upon the analysis and methods discussed in the previous chapters, this section
presents the integration concept for Git with Features. It aims to synthesize the
findings from our earlier exploration of Git’s extensibility and the workflows
associated with feature management, thereby establishing a theoretical framework
that will underpin the implementation detailed in the subsequent chapter.

To effectively implement the suggested commands, the following four questions
grant some a prior insight. The answers already indicate the ideas of the
integration concept that are explained in further detail below.

First, what information do we store about features? The system stores associations
between features and commits, along with additional metadata such as feature
descriptions or related notes that may be useful for developers.

Second, where are they stored in Git? The feature-related information is stored in
a dedicated branch within the Git repository, separate from the main code
branches. This ensures that the feature metadata does not interfere with the

14 https://writequit.org/articles/getting-started-with-git-annex.html
15 https://en.wikipedia.org/wiki/Git-annex
®https://git-annex.branchable.com/

32

https://writequit.org/articles/getting-started-with-git-annex.html
https://en.wikipedia.org/wiki/Git-annex
https://git-annex.branchable.com/

standard development workflow. In this branch, a folder structure that represents a
bidirectional mapping between features and commits is created.

Third, how is the information retrieved and accessed? A CLlI tool acts as a wrapper
around the actual information, providing an interface to add and retrieve feature
data. For the actual implementation, Git’s internal commands for parsing tree
structures in other branches can be used.

Fourth, how is information updated? The feature metadata is updated whenever a
new association between a feature and a commit is created or when additional
information about a feature is added. This can be done explicitly by invoking
specific commands designed for this purpose.

4.4.1. Feature Metadata Model

Commit
Feature
+message
name: string +auth0lr -
+Hype="commit
1 1
0.1 0..M
Feature Folder Commit Folder
1 0..N
name: string name: siring
1
0..N L— Feature Branch/
. |— feature-1/
Feature Fact File | b <commit-id-1>/
| | — <timestamp>-<sha>.json
) A | L— <commit-id-2>/
Slha- St”ng i | L— <timestamp>-<sha>.json
timestamp: string L— feature-2/
content: string L— <commit-id-2>/

L— <timestamp>-<sha>.json

(a) Entity-Relationship Model illustrating the association be- (b) Folder structure of the
tween features and commits integration concept

Figure 2: Overview of the file structure that allows to associate commits with features
and features with commits

The presented metadata model, shown in figure B, serves as the foundation for
associating features with commits and provides the context required for the defined

33

commands to operate effectively.

Each feature is represented by their own folder as shown in figure PB. Within this
folder, all information about this feature is stored in the form of folders and files. If a
text file with all commits was stored here, the feature-to-commit association would
already exist.

However, the commit-to-feature association would be hard to parse. By maintaining
a twofold binding between features and commits, it is ensured that for each feature,
all relevant commits can be identified and vice versa. In order to achieve this, a
two-level folder structure is chosen, where each individual top-level folder
represents a feature and within it, subfolders contain the associated commits. This
mapping enables developers to find all commits associated with a given feature
and, conversely, to identify all features linked to a specific commit. By using this
mapping, developers can extract further information on changes or use the
metadata files to obtain feature details.

In line with Git’s design, the same SHA-1 hash system is used for consistency.
Each commit and feature is referenced by its unique hash or identifier, ensuring
that the integrity of the system is maintained. By using Git’s native hashing
mechanism, collisions are avoided, and this feature management system can be
integrated into Git’s existing infrastructure.

The mapping is achieved by adding subfolder into the feature folders. Because the
mapping is a property of the folder structure, no parsing of files is needed to check
if a commit belongs to a feature. It is sufficient to search for the existence of the
folder. The ERM of the resulting database can be seen in figure Pa.

The intended file-based data storage is visualized in figure P3, where the
Entity-Relationship Diagram illustrates how features and commits are connected.
The structure demonstrates that starting from a specific commit, we can obtain all
related information, and similarly, from a feature, we can trace all associated
commits.

Merge conflicts are a challenge in version control software. They occur when Git
cannot determine which changes to keep because two independent commits
modify the same file. To prevent merge conflicts in the repository - particularly in
code that is versioned but not directly modified by users - it is crucial to ensure that
users are not burdened with resolving conflicts in files they have not worked on.
This is avoided by ensuring that each change affects a unique file by assigning
distinctive names and file paths.

By structuring file paths with unique identifiers such as feature/commit/hash, it is
guaranteed that no two changes touch the same file. Git already uses hashes for
file contents, so identical content yields the same hash, while differing content
produces unique hashes. Since features and commits are also uniquely identified,
this approach minimizes the possibility of merge conflicts. By preventing multiple

34

changes to the same file, Git can automatically merge changes without requiring
user intervention.

Integration with the Git history Much like the approach used by git-annex, this
model employs a dedicated branch where all feature information is stored in a
structured file format, as shown in figure PH. This separate branch ensures that
feature metadata is isolated from the main codebase, preventing any interference
with the standard development workflow while still being part of the repository.

~ 015b8df O Information for 015b8df
/ Fix bug for feature trial ouched files: i
trial/015b8dffeature_fact json J

touched files:
src/features/trial/main.cpp L)
() 2cévle () Information for 2c4b1e
“+~ Fix bug for feature test
iouched fles: ouched files:

sreffeaturesiestiunc.cop test/zeabteffeature_fact json)

£y e2f1a65

“~ Update feature test

touched files: fouched files.
test/e2f1a65/ feature_fact json
srcifeatures/test/main.cpp estie2f1abSfeature_fact jso

src/utils/lists.cpp

O Information for e2f1a65

\ Update codebase

Figure 3: Exemplary history created from the integration concept

To visualize how the expected history of a repository using this concept might look,
figure B depicts a section of such a history. The extra branch, dedicated to feature
metadata, has no direct relation to the other branches containing code and
contains all feature information from all branches.

4.4.2. Command Integration

To integrate the Git with Features commands as described in section B2, each
command will have its own script that handles input flags and executes the desired
behavior. By naming them git-<subcommand>, and installing them in the PATH, Git
will find these new subcommands and integrate them into its CLI as described in
section B3 2. The scripts themselves can be written in any language that can be
interpreted and executed by the terminal in use.

35

5. Results from Git with Features Evaluation

Based on theoretical integration concept from section 84, a Git with Features
prototype can be build and used to evaluate the benefits the integration brings for
managing features. This section presents the results of the evaluation, focusing on
both the implementation outcomes and the user feedback gathered through the
study. Key metrics and insights from the qualitative and quantitative data collected
during the user survey are discussed, with the methodical approach detailed in
section B4.

5.1. Prototype Implementation

Building on the integration concept outlined in Section &4, the next step was to
implement a research prototype according to the specification. The result of the
implementation is a repository™ containing the source code and build files, which
allows the prototype to be built as a distributable Python package. In the following |
will lay out the structure of the code base and the implemented subcommands
based on the list in section &2.

5.1.1. Implemented CLI Commands

The tool implements a variety of commands that interact with Git and manage
feature-based development. These commands are encapsulated in multiple Python
scripts located across different directories. In contrast to the layed out commands
in the previous section, here are the actual commands implemented. Currently, the
support for feature annotations to help suggest the correct features and potential
helpful commands around that scenario are still missing.

+ feature-status This command displays the current status of files in the
working directory, showing staged, unstaged, and untracked changes along
with their associated features. Files without associated features will be
highlighted, and suggestions for adding features will be provided.

» feature-info Displays feature information for the entire git repository,
offering insight into the structure and details of each feature. This command
is broken down into subcommands to provide more specific information:

— feature This subcommand shows feature-specific information:

= authors Lists all authors who have contributed to the specific
feature, making it easier to track collaboration on that feature.

17k1ttps ://github.com/isselab/feature-oriented-git

36

https://github.com/isselab/feature-oriented-git

= files Lists all files associated with the feature, providing a clear
view of which parts of the codebase the feature affects.

= branches Shows all branches where the feature is present, helping
developers understand feature distribution across different
branches.

« updatable Checks if the feature has updates available on other
branches and lists options for updating. This is useful for keeping
features in sync across multiple development branches.

» branch Used with the —updatable flag to specify which branch to
check for updates.

— all Lists all available features in the project, providing an overview of
the feature set currently managed by the repository.
» feature-add This command associates files in the repository with specific
features, making it easier to track changes. It can be used in different ways:
— by-add Allows adding files to a feature based on user input:
« all-files Adds all files in the repository to the selected feature.

« selected-files Adds only specific, user-selected files to the
feature.

— from-staged Associates staged files with features, enabling feature
tracking based on the current state of the Git staging area.

= feature-names Allows the user to specify feature names. If no
names are provided, the command attempts to associate the files
with features that are already linked to them.

» feature-blame Find out which features are associated with a file. This
command is not fully implemented yet. Line-based blames are not fully
functional yet

— filename The file to inspect.

» feature-commit Associate an existing commit with one or more features
after the commit was created.

» feature-commits Use to manage commits with feature associations. This
command was added to help with migrating an existing history to
feature-based

— list Shows all commits that are already associated with at least one
feature

37

— missing List all commits without a feature

» feature-pre-commit Checks if all staged changes are properly associated
with features. Returns an error if any issues are found. This command is
intended to be used within Git Hooks to perform pre-commit chekcs

» feature-commit-msg Generates feature information for the commit
message. Experimental command, intended to be used with a Git Commit
Message Hook and Template to add feature information in Message Trailers

Each of these commands supports the tool's goal of enhancing feature-based
development in Git.

5.1.2. Installation Setup

The prototype is packaged as a Python .wheel package, and the installation is
handled by the pyproject.toml file. The pyproject.toml file, which controls the
installation process, is shown below. The command for building is simple as the
build-in Python build tools are able to parse the file python —m build pyproject.toml.
This file defines the necessary metadata for building the package and managing
dependencies. Installation is done using a package manager, e.g.pip, and users
must ensure that the package’s scripts are included in their system’s $PATH to
make the commands executable within Git environments. This should be the
default behavior during installation, however, user feedback has shown that this
sometimes does not work as intended.

5.1.3. Prototype Architecture and Project Structure

The Git with Features prototype is structured with a clear separation between the
CLI and the internal logic. The CLI commands, built using Typer, allow developers
to manage features through Git-integrated commands without directly handling
low-level operations. The internal logic handles tasks such as reading and writing
feature data, managing the repository state, and interacting with the metadata
branch. This separation ensures that the Ul is responsible for structuring the
output, while the core operations are managed by internal functions.

The internal logic consists of two main types of functions: low-level state
management and specific information retrieval. The state management functions
deal with setting up the repository context and accessing the metadata branch,
ensuring that the necessary Git environment is correctly configured. On the other
hand, the specific information retrieval functions target particular datasets, such as
feature-specific commit history or branch information. These functions are

38

combined and reused to implement higher-level user commands, making it easy to
extend the system by adding new commands that operate in different contexts.
The prototype also includes example Git hooks that can be used to enforce specific
commit policies. For example, one hook ensures that commits are only possible if
feature-related information has been added, helping to maintain consistency in
feature tracking across the repository. The hooks automate checks during the
commit process, preventing actions that could lead to incomplete or untracked
feature data.

5.1.4. Resolved Challenges during Implementation

While the integration concept provided a general framework for design decisions,
certain challenges emerged during implementation that required resolution. The
challenges and implemented solutions are shown below. Apart from the help flag
issue, most of them could be addressed within the scope of this thesis. Solutions
were designed to ensure cross-platform compatibility and requiring as little user

interaction as possible. However, not all of these challenges could be addressed
finally.

+ Path Management: Managing file paths consistently across Windows and
Unix systems was essential to ensure the Git hooks and scripts functioned
properly. Hardcoded paths would potentially lead to errors in different
environments. The solution was to use Git’s internal path resolution functions
in combination with Python’s Path library to avoid OS-specific code, making
paths valid on any platform.

» Git Worktrees: Worktrees present a non-standard .git directory structure,
which complicated the construction of the Repository object needed for the
GitPython library to execute Git commands. Using the Git rev-parse
command, | could dynamically resolve the base path of the repository given
the current folder belonged to a repository, allowing the tool to find the correct
Git repository directory even in worktree setups. This ensures compatibility
with a variety of user configurations.

+ Automating Metadata Branch Setup: Normally, only the current branch is
updated when working with Git. To support feature sharing across all
branches, | automated the creation and management of a metadata branch.
While this reduced user errors, synchronization issues still exist, particularly
when users lack write permissions or work across multiple machines.

+ Custom Help System: Typers text-based help system did not align with Git’s
use of man-pages, which made it impossible to display help as expected.

39

Without the knowledge of how to automatically generate and integrate
man-pages from within my installation process, | implemented a workaround
where help text is displayed by default when no arguments are provided.
While this works, a more complete solution involving a potential man-pages
integration remains to be found.

+ Reading and Updating Feature Information without Checkout: Git
typically requires a clean workspace to switch branches, and switching
branches disrupts user workflows when they have uncommitted changes. To
avoid this, | used 1s-tree to read files from the metadata branch without
needing to switch to the branch. For writing, | leveraged Git's fast-import
command, allowing me to create commits without switching branches,
ensuring smoother user operations. This command is intended to migrate
from SVN to Git, but the mechanism allows to create arbitrary commits from
a given file, following a certain format.

5.2. Evaluation Results

This section presents the principal findings of the evaluation of Git with Features,
based on the raw data provided in appendix B in section O. As outlined in
section B-42, in this section | analyze whether the claims made are valid.
Furthermore, | present the data necessary to answer research question @ by
conducting a comprehensive analysis of the obtained user data and determining
whether Git with Features fulfils the claims made.

Recruited Participants Participants were recruited from a diverse pool of
developers, comprising half RUB students and staff, and half contacts from outside
the institution. Among the 15 participants (7 in Group A and 8 in Group B), a small
number had prior experience with feature-oriented tools. Specifically, only 4
participants across both groups had such experience. Figure @ shows the number
of participants who rated themselves in each category to get an overview of the
distribution of prior knowledge in the groups.

When comparing general programming experience and Git knowledge across the
groups, Group B displayed a slightly higher level of experience on average, with
more participants rating themselves as having strong Git knowledge. Group A,
which started with traditional Git, had a more balanced distribution of skill levels,
including participants with moderate to high Git expertise. The initial group
assignment ensured no prior advantage for any group due to asynchronous
participation.

40

Programming Experience by Group ~ Git Knowledge by Group Feature Tool Knowledge by Group

8
. - Scores

7

o2}
a »h WwN = O

N

Number of Users
w BN (4]

-

m < om
Group Group Group
Figure 4: Previous experience of participants, sorted by group. Group A had 7,
Group B 8 participants. For the tool knowledge, users answered either
Yes or No, where Yes is displayed as a value of 5 and No as a value of 0

5.2.1. Correctness of Task Completion

When analyzing the correctness of task completions across different setups, Git
with Features consistently led to higher correctness rates than traditional Git.
Across all tasks, participants using Git with Features produced more correct
results, particularly for complex, feature-related tasks where tracking features
across branches was necessary. The difference in performance is most noticeable
in tasks requiring feature management, where the integrated tool significantly
improved accuracy.

Proportion of Correctness by Tool within Feature-Oriented Tool Experience

§ 1.0 Correctness Score
k= Hmm [ncorrect
o 0.8 .
2 mmm Partially Correct
8 0.6 mmm Correct
S
5 0.4
s
o 0.2
« 0.0
GO ures)
{radition® L witn Feat
(o kNO*G\

Feature-Oriented Tool Experience and Tool Combination

Figure 5: Overview of correctly solved tasks showing the influence of tool experience
and current setup

41

The figures 04, T3, 2 and A3 show the influence of the various independent
variables (programming experience, group membership, Git knowledge, experience
with feature-oriented tools) on the accuracy of the task solutions.

The influence of tool use on the correctness of the tasks is shown independently of
the respective values of the independent variables. By normalizing the proportions
to 1, one can clearly see that, regardless of the participants’ previous experience,
the accuracy of the solutions is higher if the tool Git with Features was used. This
is shown by higher proportions of completely correct answers in the corresponding
diagrams. The results indicate that the use of Git with Features has a positive
effect on the correctness of the task solutions, regardless of the users’ previous
experience.

5.2.2. SUS Evaluation

Even though the SUS is not a metric | want to improve, | still wanted to compare
the ergonomics of the tool. When looking at the general overview, the usability
seems to pretty comparable as shown in figure [@. However, when looking at the
variable-based showings in figure B, there is no consistent trends. Just like with the
tool preference, users of Group A perceived traditional Git more useable whereas
Group B found the new tool more usable. For users with a medium experience
level, the new tool was also perceived as more usable then Git.

42

SUS Score
B (< (=2} ~ o] ©
o o o o o o

w
S

20

SUS Score
N w B [$1]
o o o o

o

. 2 (n=3)
B 3 (n=7)
B 4 (n=3)

B 50n0=2)° o

SUS Score by Programming Experience

00

SUS Score by Feature Tool Experience

B No (n=10) o
[Yes (n=5) ° °
)

o [==——]
[}

00

]
o

Traditional Git Git with Features

Setup

SUS Score by Git Knowledge

w
=
i
h)

o
o}
|

SUS Score by Group

. A (n=7) o
I B (n=8) o
o (o] Q
13 O
[¢]
o
[¢]
o
o o

]
o

Traditional Git Git with Features

Setup

Figure 6: SUS Score evaluation shown with respect to the users previous expertise

SUS Score

90

80

70

60

50

40

30

20

10

Comparison of SUS Scores for Traditional Git and Git with Features

o
Q
Q

Q
o

Traditional Git

o

Git with Features

Setup

Figure 7: SUS Score evaluation shown with respect to the users previous expertise

5.2.3. Time Evaluation

In figure B, the average time needed to complete the tasks with the different tools is
shown. As the questions are structured such that the effort needed and information
searched for is comparable, the times can be compared.

The timing shows that the average time needed is not dependent on the tool per
se. For easy information retrieval tasks like finding authors and files associated
with a certain format in the commit message, standard Git seems to be on average
faster. However, when feature evolution between branches needs to be compared,
the Git with Features Tool is faster again. Adding new information to the history
currently takes longer for the new tool.

5.2.4. Prefered Setup

At the end the users were asked to state their tool preference on a scale of 1-5,
where 1 indicated strong favor of traditional Git and 5 strong favor of Git with
Features. In figure @8 and figure A0, the results are visualized. The largest group of
users chose Git with Features, as 7 out of 15 participants opted for a strong or very
strong preference of the tool. However, for 5 people, the traditional Git setup is
more preferable. When looking at figure @13, it is interesting to see that Group B,
who started with the tool extension, has a larger preference rate than Group A who
started with traditional Git. In figures A8, I and and @11, the influence of the other
independent variables on the selection can be seen. As there is only one
participant in the most extreme knowledge groups, these are omitted. For the other
groups, higher Git knowledge seems to correspond with a higher extension
preference as well. A similar trend can be seen in the influence of programming
expertise. Users already familiar with feature tools also prefer the tool more than
those without tool expertise,

To summarize, a general tendency to use the Git with Features approach becomes
apparent. When dividing the data based on the previous Git knowledge of users,
apart from the outliers for very strong and very weak Git knowledge, a higher Git
knowledge seems to indicate a stronger preference for the new setup.

To gain a better understanding of the reasoning, looking into the comments
explaining the users choice can be interesting. From the comments, the following
reasoning in favor and against the tool were given. The full list of comments, sorted
by preference, is listed in listing P2.

+ Plain Git preferred Users that already know how to use Git and feel
unfamiliar with the feature-oriented workflows don’t see a need to switch.
Interface Inconsistencies make the tool less usable then the intended
integration concept.

44

Average Task Time by Feature-Oriented Tool Experience

o
o

o
—_ o o
2]
L6
=}
£
E
g4
=
2 o
o o
o o
Average Time Traditional Git Average Time Git Features

Feature Tool Experience

Figure 8: Overview of average times needed, broken down by the independent vari-
ables of this experiments

* Indecided Users without Git skills or without a strong preference but a
general openness for third-party tools chose the neutral option.

+ Git with Features preferred The improved organization and clarity of
management are reasons in favor of using the tool. Especially retrieving
information was perceived easier than with plain Git as a lot of output parsing
becomes unnecessary. Here, users also liked the concise commands. The
tool was deemed interesting for complex setups.

Users against Git with Features prefer traditional Git due to familiarity, perceived
interface inconsistencies, or reliance on third-party tools for simplicity. On the other
hand, users in favor appreciate its clarity in feature management, ease of
information retrieval, and concise commands, particularly for complex projects.

Listing 22: Overview of user feedback, structured by selected tool preference

Preference 1 (Strongly prefer Traditional Git):
["I already know a little about git and learning how to use

git with features would take some time. | would spare my
time and just do it the old way since | don’t got why to
use git with features anyways.", ’'Inconsistencies in user

interface , poor integration with builtin git commands. ’]

45

Preference 2 (Moderately prefer Traditional Git):

["] don’t think | can give a correct statement on this yet
because my skills with plain git are not yet sufficient",
nan, nan]j

Preference 3 (Neutral):

[l normally use third party tools to simplify the process
and not use the command line.’, 'For simple projects, |
would use plain Git. For complex projects, | would use Git
with features, but | still need to learn how to use them

better.’, ’usability ']

Preference 4 (Moderately prefer Git with Features):

[nan, nan, ’Git with features makes the repository clearer,
especially when working with features. Information related
to a specific feature are much easier to find’]

Preference 5 (Strongly prefer Git with Features):
[nan, ’Gathering information about features in plain git

requires a lot of manual parsing’, ’It makes it easier to
make changes to features and retrieve information about
features history in a project ', 'l prefer not using grep

simulator, and git log tends to either give way too much
or not enough information. While the git feature extension
thingy is concise, and the commands are very self
explanatory (aka give me a cheat sheet and i will be fine)
. And i cant mess up the commit message. ’]

5.2.5. Key Results and Interpretation

The evaluation demonstrates that Git with Features improves workflow efficiency,
particularly in the management of feature-related tasks, such as the tracking of
features across different branches. In comparison to traditional Git, the tool
provides superior organization and simplifies complex feature management tasks.
The evaluation largely corroborates the assertions posited in the hypothesis. The
implementation of Git with Features resulted in a reduction in task completion time
and an enhancement in the capacity to oversee features across branches.
However, the tool currently offers limited advantages in the context of
non-feature-based tasks. Approximately 25% of users indicated a strong
preference for the new configuration, which aligns with the hypothesis that the tool

46

would be favored by those engaged in feature-centric workflows.

An unplanned but beneficial outcome of the tool’'s development is its ability to
retroactively associate commits with features, allowing existing repositories to be
adapted without altering the original Git history. Since the tool only adds references
and does not modify the objects, regular Git operations remain unaffected, with the
only addition being the metadata branch. This functionality allows to adopt the tool
for existing projects, making it useful for a broader range of projects.

These results support the hypothesis that Git with Features enhances task
efficiency in feature-centric development without sacrificing usability. While the tool
is particularly beneficial for complex feature management, traditional Git remains
competitive for simpler tasks. In summary, Git with Features meets its primary
objective of improving feature-centric task efficiency, providing valuable insights for
further developments in version control systems.

The order of using the tool seems to make a huge difference, at least greater then
expected, in the setup. It might be due to the fact that the second part of the
experiment was less nice for users so their mood was worse. Also, it might be due
to the fact that some users didn’t know either approach and switching from one
learned setup to another was perceived difficult as well. When looking at the
reasoning for the choice, lack of experience was a thing.

47

20

-
¢)]

-
o

Time (minutes)

20

10

Time (minutes)

Average Task Time for Task 1
e}

=

Average Task Time for Task 3

O

e
==

Traditional Git Git with Features

Setup

Average Task Time for Task 2

Average Task Time for Task 4

Traditional Git Git with Features
Setup

Figure 9: Overview of average times needed, broken down by the independent vari-

ables of this experiments

48

Distribution of User Preferences for Different Setups
4

3
1 2 3 4 5

Count of Users

1
0
Setup Preference (1-5)

Figure 10: Distribution of user preferences across the different experience levels and
groups. Group A had 7 participants, and Group B had 8 participants. The
displayed values represent the distribution for each preference category.

49

Proportion of User Preferences by Group

1N o o =
> o © =}
| III
| III

Proportion of Preferences

o
N}

o
=}

Group Category

Preference 1
Preference 2
Preference 3
Preference 4
Preference 5

(a) Proportion of user preferences by group. This figure illustrates the

distribution of preferences for Git with Features versus Tradit
separated by Group A and Group B.

S)

Proportion of Preferences
N o
IS o
N ...

o
=3}

Proportion of User Preferences by Programming Experience

3 A

Programming Experience Category

o
[N}

o
=}

(b) Proportion of user preferences by programming experience.

ional Git,

Preference 1
Preference 2
Preference 3
Preference 4
Preference 5

This fig-

ure shows how users’ programming experience influences their pref-

erence for either Git with Features or Traditional Git.

50

6. Discussion

With the results of the previous analysis in mind, it is now possible to address the
research questions. In this chapter, the results are discussed, including threats to
validity, and answer the questions first posed in the introduction of the work. The
objective of this thesis was to provide and evaluate a feature-oriented Git extension
that allows to obtain feature-information from the entire project to in turn support
maintenance tasks for features.

Below, the three research questions regarding the requirements and conceptual
approach as well as the measured improvement outcomes are answered. Finally,
potential threats to validity that could compromise the found outcomes are
discussed.

6.1. Answering RQ

Research Question 1: What commands should a command-line interface pro-
vide to facilitate feature-oriented workflows that assist developers in feature man-
agement, while reflecting the syntax typically used in Git commands?

The list of obtained commands can be found in section B2. They are derived from
the workflow descriptions of section B2, which features in total 5 workflows. The
needed commands cover all the needs to find and update information on features
both globally in the project as well as in regards to the changes in the current
worksapce.

* git feature-info

* git feature-status
* git feature-add

* git feature-commit

To refine the output information, the commands are designed to receive flags that
adjust the information being displayed.

Additionally git feature—commits helps to review the history as a tool to ensure
that all commits have feature assignments.

These commands facilitate workflows focused on finding features in files, searching
for updates in other branches, and providing an overall project overview. The idea
was to have commands that are as close to the current git commands as possible.

51

6.2. Answering RQ 2

Research Question 2: How can Git be extended to support feature-oriented de-
velopment, and what integration concept enables this while ensuring that the com-
mands feel native to the user?

From the extension possibilities explored in section E232, the addition of custom
CLI commands by adding scripts following the naming convention was selected for
the integration of the new commands. Git detects these scripts and integrates them
into its command list. These scripts are arbitrary and must be executable on the
system.

The integration concept stores feature information in a separate branch where all
feature-related data from all branches is stored. Each feature has its own folder,
and within these folders are subfolders for each commit associated with the
feature. This file structure can be read by Git and used to find associations
between code changes and features. Together with the user interface from
research question f, this forms the complete integration concept.

The biggest challenge when the users add to branches via side effects is to ensure
no merge conflicts occur. this is solved by never modifying results but rather adding
new files when there are new information. this way, the files have different names
and won’t create merge conflicts.

6.3. Answering RQ 3

Research Question 3: How does the Git with Features prototype enhance the
management and traceability of features in software development?

The evaluation was conducted with the research prototype obtained from the last
research question’s work. The Python-based command-line tool was installed as a
package and automatically added the defined scripts mentioned in research
question B. This tool, along with an exemplary calculator project repository, was
given to participants who were asked to solve four tasks using both traditional Git
and Git with Features. The results were evaluated using metrics The analysis
shows that the usability of the Git extension is comparable to traditional Git, while
improving task completion time. Additionally, users preferred the extension. Thus,
the extension helps developers work more efficiently with features, even when their
history is ideally structured.

52

6.4. Threats to Validity

In this section, we outline potential threats to the validity of the study’s results,
categorized into internal, external, and construct validity.

Internal Validity A key internal threat stems from the controlled environment
used during the evaluation. The test repository featured a well-documented and
consistent Git history, allowing for an idealized scenario where feature-related
changes could be easily identified. This does not reflect the complexity of
real-world projects, where inconsistent commit histories and tangled feature
associations are common. In these cases, the tool might face challenges not
observed during the controlled testing, particularly when identifying features linked
to ambiguous commits or resolving historical technical debt.

Another internal threat is that some features of the tool, particularly those
enhancing user experience (e.g., comprehensive help functions or onboarding
processes), were not fully implemented. As such, the tool’s usability might have
been underestimated, and the study does not account for the additional benefits
these features could offer in real-world usage.

External Validity The artificial repository used in this study limits the
generalizability of the findings to other settings. Real-world projects often have
more complex branching structures, inconsistent commit messages, and varying
levels of documentation. While the tool performed well in the simplified
environment, it remains unclear how it would handle repositories with substantial
technical debt, incomplete documentation, or inconsistent feature tracking. Thus,
further evaluation is needed to assess its effectiveness across different project
types, particularly in large-scale, multi-team environments.

Additionally, the study’s focus on a single type of project (a calculator application)
restricts its application to other domains. Larger projects with more intricate
dependencies or those managed by multiple teams could present challenges that
were not covered in the scope of this evaluation.

Construct Validity The construct validity of the study is impacted by the
evaluation metrics and tasks chosen for the user study. The tasks focused on basic
feature management operations, which do not cover the full complexity of
real-world scenarios, such as handling commits with intertwined features or
navigating highly complex branching strategies. As a result, the study does not fully
capture the potential limitations or performance issues the tool might face in more
complicated workflows.

53

Furthermore, while the use of a separate metadata branch was intended to
preserve the integrity of the existing commit history, this approach may not suit all
development workflows, particularly in projects where maintaining additional
branches could lead to increased complexity. Alternative approaches, such as
embedding feature information directly within commits or using an external
database, could have yielded different results and should be explored in future

work.

54

7. Conclusion

In conclusion, the presented Git with Features extension allows developers to
adhere to feature-oriented implementation workflows. To achieve this, the tool
implements the integration concept derived in research question B which explains
what kind of feature information and how it is stored. With this concept, the
workflows described for research question @ are enabled by providing the derived
interface. The study shows promising results regarding the preference of users for
the tool over traditional Git, indicating a speed-up in locating features and
examining update states without compromising on usability. However, the
documentation of usage needs to be improved for the feature-commit process to
ensure the intended workflow becomes obvious to users.

Limitations

While the development of the Git with Features tool has shown promising results,
the following limitations affect the tool’s current usability and scope.

1. Incomplete Implementation of Key Features The planned support for
feature annotations and the feature-blame functionality were not fully
implemented, primarily due to time constraints. As a result of this incomplete
integration, the prototype currently exhibits a subset of the intended
functionality originally envisioned for the tool. However, with additional time, it
would be feasible to incorporate these features.

2. Python Dependent Currently, developers are required to have a new version
of Python installed in order to utilize the tool, as the distributed artifacts are
not yet compiled for the respective operating systems. Given that Python is a
dependency for numerous tools and is frequently employed for prototyping,
the majority of developers have already installed it on their machines. Should
the necessity arise, Python projects can be compiled to standalone
distributables; however, the effort was deemed unnecessary in the absence
of an immediate requirement.

Future Work

Based on the limitations and results presented here, this section outlines a number
of promising directions | see for future research and development.

In-Depth Research Across All Steps In keeping with the principles of the
design science research approach, future work should focus on iteratively refining

55

each development step by conducting deeper, more detailed investigations of both
the concept and the implementation approach. This iterative cycle of design,
implementation, and evaluation can help to incrementally improve the effectiveness
and usability of the tool by refining the workflows, user interface, and integration
options with existing structures.

+ User Interface Design and Workflows: Some feedback suggests that the
naming of the subcommands is not as in line with the traditional Git
commands as it could be. Additionally, options to suggest feature mappings
based on comments found in code or based on previous pattern is not
explored in depth yet. Work on both can help to improve the user experience
by offering maximum guidance for the additional step of associating changes
with features as possible. Also, deriving new variants by selecting features
might be supportable through the command line interface. However, the
expected behavior of these commands might be highly context sensitive and
needs more investigations on the user level.

« Experimental Methodology: Revising the experimental design with clearer
instructions, demonstrations, and iterative testing would improve the reliability
of the improvements found from the studies. Future experiments should
incorporate structured feedback at each stage to evaluate the tool under
optimal conditions, allowing for adjustments based on real-world usage.
Long-term studies could also provide valuable insights by measuring benefits
over extended periods, particularly considering the overhead of managing
and transitioning to new workflows. Additionally, focusing on a subgroup
already familiar with feature-oriented development functions may yield more
relevant and targeted feedback.

« lterating the prototype: Developing comprehensive guides iteratively,
including case studies and practical examples, would support new users in
understanding how to effectively integrate the tool into their workflows. Each
iteration should refine the documentation, incorporating user feedback to
enhance clarity and usefulness.

Expanding the Meta Concept The concept of linking metadata with Git commits
is not limited to feature management. Future research could explore how this
approach might be adapted to other domains, such as project management, bug
tracking, or release planning. By associating commits with specific tasks, issues, or
broader concepts, developers could gain more detailed insights into their projects,
improving workflow management and traceability. Expanding this meta concept
could lead to a more generalized framework within Git for handling diverse types of

56

metadata and solve similar problems related to information not being tracked
alongside the code.

Personal Thoughts

| am satisfied with the results of the project, even though not all implementation
goals were achieved. In particular, | was pleased with the successful evaluation,
which confirmed the concept and showed that the tool has practical applications.
One unexpectedly positive finding was how easy it was to add feature information
to existing Git histories. It was possible to retrofit an existing history within a day, as
long as the commit messages were well structured and the scope of the changes
was clear. This shows the potential of the approach for wider application, even in
existing projects. Organizing my work and keeping a structured schedule helped
me make progress despite unexpected challenges. The exchange and critical
discussions with other developers also gave me new perspectives on the topic,
which proved to be important for success as they outlined potential problems and
lead to further investigations on my part.

Overall, the tool shows potential for extracting information from Git histories. It may
encourage developers to write more thoughtful commits by showing how this data
can be used to gain insight into a project’s feature structure. The project has not
only increased my own knowledge of Git, but also provides a foundation for future
development. | hope the tool will actually be used and can prove its usefulness in
practice.

57

References

[1]

2]

3]

[4]

[3]

[6]

[7]

[8]

9]

[10]

[11]

Sven Apel et al. Feature-Oriented Software Product Lines. Jan. 2013. ISBN:
978-3-642-37520-0. DOI:[10.1007/978-3-642-37521-7.

Thorsten Berger et al. “Software Evolution in Time and Space: Unifying
Version and Variability Management (Dagstuhl seminar 19191)”. In: Dagstuhl
Reports. Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, 2019.

John Brooke. “SUS: A quick and dirty usability scale”. In: Usability evaluation
in industry 189 (1996), pp. 4—7.

Gary Charness, Uri Gneezy, and Michael A. Kuhn. “Experimental methods:
Between-subject and within-subject design”. In: Journal of Economic
Behavior & Organization 81.1 (2012), pp. 1-8. ISSN: 0167-2681. DOI:
https://doi.org/10.1016/7.7ebo.2011.08.009. URL: https:
//www.sciencedirect.com/science/article/pii/S0167268111002289.

Reidar Conradi and Bernhard Westfechtel. “Version models for software
configuration management”. In: ACM Computing Surveys (CSUR) 30.2
(1998), pp. 232-282. DOI: 10.1145/280277.280280.

Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. “Reporting
experiments in software engineering”. In: Guide to advanced empirical
software engineering (2008), pp. 201-228.

Wenbin Ji et al. “Maintaining Feature Traceability with Embedded
Annotations”. In: 19th International Software Product Line Conference
(SPLC). 2015.

Barbara Kitchenham and Stuart Charters. “Guidelines for performing
Systematic Literature Reviews in Software Engineering”. In: 2 (Jan. 2007).

Eric Knauss. Constructive Master’s Thesis Work in Industry: Guidelines for
Applying Design Science Research. 2021. arXiv: 2012.04966 [cs.SE]. URL:
https://arxiv.org/abs/2012.04966.

Jaejoon Lee and Dirk Muthig. “Feature-oriented variability management in
product line engineering”. In: Commun. ACM 49.12 (Dec. 2006), pp. 55-59.
ISSN: 0001-0782. DOI: 10.1145/1183236.1183266. URL:
https://doi.org/10.1145/1183236.1183266.

Lukas Linsbauer, Thorsten Berger, and Paul Grinbacher. “A Classification of
Variation Control Systems”. In: Proceedings of the 16th ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences (GPCE). Vancouver, Canada: ACM, 2017, pp. 14-25. DOI:
10.1145/3136040.3136054.

58

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/https://doi.org/10.1016/j.jebo.2011.08.009
https://www.sciencedirect.com/science/article/pii/S0167268111002289
https://www.sciencedirect.com/science/article/pii/S0167268111002289
https://doi.org/10.1145/280277.280280
https://arxiv.org/abs/2012.04966
https://arxiv.org/abs/2012.04966
https://doi.org/10.1145/1183236.1183266
https://doi.org/10.1145/1183236.1183266
https://doi.org/10.1145/3136040.3136054

[12]

[13]

[14]

[15]

[16]

[17]

Lukas Linsbauer, Thorsten Berger, and Paul Grinbacher. “A classification of
variation control systems”. In: Proceedings of the 16th ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences. GPCE 2017. Vancouver, BC, Canada: Association for
Computing Machinery, 2017, pp. 49—62. ISBN: 9781450355247. DOI:
10.1145/3136040.3136054. URL:
https://doi.org/10.1145/3136040.3136054.

Lukas Linsbauer et al. “Concepts of Variation Control Systems”. In: Journal
of Systems and Software 171 (2021), p. 110796.

Wardah Mahmood et al. Seamless Variability Management With the Virtual
Platform. 2021. arXiv: 2103.00437 [cs.SE].

Johan Martinson et al. “HANnS: IDE-Based Editing Support for Embedded
Feature Annotations”. In: 25th ACM International Systems and Software
Product Line Conference (SPLC), Tools Track. 2021.

Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. “A Common
Notation and Tool Support for Embedded Feature Annotations”. In:
Proceedings of the 24th ACM International Systems and Software Product
Line Conference - Volume B. SPLC °20. Montreal, QC, Canada: Association
for Computing Machinery, 2020, pp. 5-8. ISBN: 9781450375702. DOI:
10.1145/3382026.3431253. URL:
https://doi.org/10.1145/3382026.3431253.

Stefan Stnciulescu et al. “Concepts, Operations, and Feasibility of a
Projection-Based Variation Control System”. In: 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 2016,

pp. 323-333. DOI: 10.1109/ICSME.2016.88.

59

https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1145/3136040.3136054
https://arxiv.org/abs/2103.00437
https://doi.org/10.1145/3382026.3431253
https://doi.org/10.1145/3382026.3431253
https://doi.org/10.1109/ICSME.2016.88

A. Experiment Material

60

Git Feature Command Documentation

This document provides an overview of the available commands and options for the git
feature tool. It allows you to associate features with commits and files in a Git repository,
manage feature metadata, and inspect feature-related information.

Git Feature Command Documentation
Overview
Commands
Adding Feature Information
git feature-add
git feature-add by-add
*qit feature-add from-staged
git feature commit
git feature blame
git feature status
qgit feature info
Subcommands
git feature info feature

qgit feature info all
Workflow Notes

Overview

The git feature tool provides commands to:

Stage files and associate them with features.

Associate features with existing commits.

Display feature associations for files.

Show the status of features in the working directory.

Inspect features by displaying information about their authors, files, history etc.

Adding Feature Information

git feature-status

Displays the current status of files in the working directory, showing staged, unstaged, and
untracked changes along with their associated features.

This command is intended to be used with the following commands to add feature
information while staging files. It can also be used to aid in the selection of files for the next
commit.

Usage:
git feature-status

git feature-add

The git feature-add command is used to stage files and associate them with features.

Alternatively, you can use the git feature-commit workflow to add features after creating a
commit.

git feature-add by-add
Stages specific files or all files and associates them with the provided features.
Usage:
git feature-add by-add [FEATURE_NAMES...] [OPTIONS]
Arguments:

e FEATURE_NAMES: A list of feature names to associate with the staged files.
Options:

e -a, --all: Stage all tracked changes and associate them with features.

e -f, --files [FILES...]: Specify a list of files to stage and associate with
features.
Examples:

git feature-add by-add FeatureA --all

git feature-add by-add FeatureX --files src/main.py --files
src/utils.py

*git feature-add from-staged

Associates features with the currently staged files. Currently, it derives the feature list from
the previously selected features for those files and is not fully implemented yet.

git feature-commit
Description:

Associates feature information with an existing commit. This is useful when you want to add
feature metadata to a commit after it has been created. After executing this command, the
output of feature-info will be updated as well.

Usage:

git feature-commit [COMMIT_ID] [OPTIONS]

Arguments:
e COMMIT_ID: The ID of the commit to associate the feature information with.
Options:

e --features [FEATURES...]: Manually specify feature names. Each feature

name should be prefixed with - -features. If this option is provided, staged feature
information will be ignored. Otherwise, the program will try to derive the information.

Example:

Associate the last commit with a new feature (can be repeated multiple times to add multiple
features)

git log -1 // outputs the latest commit info
git feature-commit <commit-id> --features FeatureX

git feature-commits
Description:

Provides information about commits that are either already associated with a feature or have
not been associated with any feature yet. This is especially useful when transitioning to
feature-based workflows or when tracing commits for specific features. It helps developers
identify which commits have feature metadata associated with them and which do not,
ensuring that no commit is left untracked.

Usage:

git feature-commits missing
git feature-commits list

Reading Feature Information

git feature-blame
Displays features associated with file lines. Optionally specify a line or a range of lines.
Usage:
git feature-blame [FILENAME]
Arguments:
e FILENAME: The file to display feature blame for.

Examples:

git feature-blame src/main.py

git feature-info

The git feature-info command provides information about features in the repository.
git feature info all

Description:

Lists all available features in the project. Use these names with git feature info
feature [FEATURE_NAME] to inspect details.

Usage:

git feature-info all

git feature-info <feature>
Description:

Shows detailed information about a specific feature, including associated authors, files,
branches, and update status.

Usage:

git feature-info feature [FEATURE_NAME] [OPTIONS]

Arguments:

e FEATURE_NAME: The name of the feature to inspect.

Options:
e --authors: Show all authors who contributed to this feature.
e --files: List all files associated with the feature.
e --branches: Show all branches where the feature is present.

--updatable: Check if the feature has updates available on other branches and list
the update options.

--branch [BRANCH]: Specify a branch for checking updates (used with
--updatable).

Examples:

Display all information about a feature:
git feature-info feature FeatureX --authors --files --branches
Check if a feature is updatable on another branch:

git feature-info feature FeatureY --updatable --branch develop

Note: This documentation assumes that you have the git feature tool installed and
configured in your Git environment. The commands and options provided are designed to
help you manage and inspect feature associations within your Git repository effectively.

Git With Features - Reference for
Traditional Git Tasks

Git Introduction
Feature-Oriented Development Introduction
Conventional Commit Format

Helpful Git Commands for History Exploration

1. qit log
Displays the commit history.

Useful flags, that can also be combined:

Git Introduction

Git is a distributed version control system that allows developers to track changes in their
codebase over time. It helps teams collaborate by providing tools to branch, merge, and
revert code while maintaining a detailed history of all changes. With Git, you can experiment
with new features, fix bugs, or roll back to previous versions without affecting the main
project. Common commands like git add, git commit, and git push form the
foundation of this workflow.

Feature-Oriented Development Introduction

Feature-Oriented Development (FOD) organizes software development around
features—units of functionality that meet specific requirements. In FOD, code assets like
classes or methods are associated with the features they implement, making it easier to
track and manage changes. By linking code to features, developers can modify or extend
functionality without impacting unrelated parts of the system. This approach enables better
modularity, flexibility, and maintainability in large, evolving codebases.

Conventional Commit Format

The Conventional Commit format can help to have a clean and consistent Git history. In the
experiment, all commits follow this format to make it easier to read the history. Therefore, all
commit messages look as follows:.

<type>(feature): <description>

<explanation>

e Type: The purpose of the commit, such as feat (feature), fix (bug fix), or chore
(routine tasks).
Feature: The name of the feature being affected.
Description: A short and clear description of the change.
Explanation: Optional, used to describe in more detail what was changed and why

Helpful Git Commands for History Exploration

All git commands have their own documentation, which can be found when appending the
--help flag to any command.

git log

Displays the commit history.
Useful flags, that can also be combined:

--oneline: Shows a simplified commit history, with one line per commit.
--all: Displays the commit history for all branches.

--author=<name>: Filter commits by author.

--help: Shows all options for the log command

--format='%aN". Format takes multiple values, this would show the authors
--grep="<string>": Searches for a string in commit messages.

<flags> -- <filename>: Displays the commit history of a specific file
<branchA>..<branchB>: Shows the commits between two branches.

git branch
Lists all branches.
e --all: Outputs all branches, including remote ones

git checkout <branch/commit>
Switches to the specified branch or commit.

B. User Study - Questions

Previous experience The links to the Google Forms for Group A and Group B
can be found in the footnote™

1. How would you rate your programming experience?
2. How would you rate your Git knowledge?
3. Have you ever worked with any feature-oriented tools before?

4. If yes, which tools have you used, and for what purpose?

Traditional Git Questions

1. If you have questions about feature subtract, whom do you ask? Write down
name and e-mail address.

2. Which files were touched to implement feature add? Put in the filenames.

3. Compare the branches fix-input and main. Which features exist on main but
not in fix-input?

4. Commit your changes! What commit message did you choose?

5. System Usability Scale Questions 1

Git with Features Questions

1. How many authors does the feature add have?
2. Which files are touched to implement feature subtract?

3. Which branch has the newest commit for feature core? And is the main
branch up-to-date regarding that feature?

4. What commit message did you choose?

5. System Usability Scale Questions 2

Final Decision Quesionts

1. Which setup do you prefer?

2. What are your reasons for this choice?

8Group A: https://forms.gle/zPRmm33hwwR2KMpJ9 Group B: https://forms.gle/
ATzcPRgR4 (pYcXZxy

68

https://forms.gle/zPRmm33hwwR2KMpJ9
https://forms.gle/ATzcPRqR47p9cXZx5
https://forms.gle/ATzcPRqR47p9cXZx5

C. Experiment Data

By continuing, you agree to participate in this study. How would How would Have you
you rate you rate ever worked
your pro- your Git with any
gramming knowledge? feature-
experience? oriented

tools be-
fore?
0 | agree to the use of my anonymized data for research purposes. 2 2 No
1 | agree to the use of my anonymized data for research purposes. 3 3 No
2 | agree to the use of my anonymized data for research purposes. 2 2 Yes
3 | agree to the use of my anonymized data for research purposes. 2 1 No
4 | agree to the use of my anonymized data for research purposes. 4 4 No
5 | agree to the use of my anonymized data for research purposes. 5 5 No
6 | agree to the use of my anonymized data for research purposes. 3 3 No
7 |l agree to the use of my anonymized data for research purposes. 5 3 No
8 | agree to the use of my anonymized data for research purposes. 4 4 No
9 | agree to the use of my anonymized data for research purposes. 4 4 No
10 | agree to the use of my anonymized data for research purposes. 3 2 Yes
11 | agree to the use of my anonymized data for research purposes. 3 3 Yes
12 | agree to the use of my anonymized data for research purposes. 3 3 Yes
13 | agree to the use of my anonymized data for research purposes. 3 2 Yes
14 | agree to the use of my anonymized data for research purposes. 3 2 No

If you have ques- Q1/4: How long Which files were Q2/4: How long Compare the QS8/4: How long Commit your
tions about feature did it take? touched to im- didittake? branches fix-input did it take? changes! What
subtract, whom do plement feature and main. Which commit message
you ask? Write add? Put in the features exist on did you choose?
down name and e- filenames. main but not in
mail address. fix-input?
0 Tabea, 0 days 00:00:02 input.py, main.py, 0 days 00:01:34 subtract 0 days 00:00:56 introduce feature
tabea.roethemeyer@rub.de operastions.py divide to calculator
1 Tabea Rthemeyer 0 days 00:05:17 git-with-features-
<tabea.roethemeyer@gruppe.ai> experiment
src

operations.py

0 days 00:15:52 REDACTED; TOO

Jane Doe 0 days 00:03:40
(jane.doe@example.com)

0000 0 days 00:02:35

jane.doe@example.cOnalays 00:03:45

Jane Doe 0 days 00:00:20
<jane.doe@example.com>

0 days 00:07:59

0000

src/main.py

operations.py
main.py

input.py, main.py,
operations.py

feat(add): add divi-
sion operation and
division function

- Add the division
operation to the
operations module
- Add the division
function

0 days 00:10:00

0 days 00:02:47

0 days 00:02:18

0 days 00:00:34

docs, subtract

The installa-
tion guide in
README.md ex-
ists in main but not
in fix-input.

docs substract

subtract

0 days 00:04:45

0 days 00:03:31

0 days 00:03:06

0 days 00:00:48

"feat(divide): Im-
plemented divide
function”
feat(division): add
divide function

feat(divide): Add
feature for division
feat(divide): add
divide function

10

11

Jane Doe 0 days 00:02:15
<jane.doe@example.com>

Jane Doe 0 days 00:00:15
Jane Doe 0 days 00:00:32
<jane.doe@example.com>

Jane Doe 0 days 00:05:05
Jane Doe 0 days 00:02:00

author Jane doe? 0 days 00:02:00

0000

4

src/operations.py,
src/main.py
src/main.py src/-
operations.py
main.py opera-
tions.py
src/operations.py
src/main.py

0 days 00:04:05

0 days 00:05:00

0 days 00:00:24
0 days 00:00:31
0 days 00:01:13

0 days 00:01:00

none

0 days 00:06:30

keine Ahnung wie 0 days 00:05:00

ich das rausfinde

subtract, docs

all exist

0000

0000

0 days 00:01:06
0 days 00:05:07
0 days 00:04:00

0 days 00:02:00

gt commit -m
"feat(divide): add
divide function

- Implemented
a divide function
that divides two
numbers and
checks for division
by zero. - Added
the divide function
to the operations
list to make it ac-
cessible for use."
[new f8fed78]
feat(divide): add
divide function 1
file changed, 18
insertions(+), 3
deletions(-)
feat(divide): inte-
grate divide func-
tionality in program
- user can now se-
lect divide opera-
tion - output is the
division of the pa-
rameters

*Tests none *Limi-
tations all
feat(divide): add
divide operation
git commit -am
"added devide"
add divide function
to operations list
feat(divide):
<added a divi-
sion op>

12

13

14

Jane Doe 0 days 00:03:12
<jane.doe@example.com>

Jane Doe 0 days 00:02:00
<jane.doe@example.com>

Jane Doe, 0days 00:01:22
jane.doe@example.com

main, operations

no idea

src/operations.py

0 days 00:08:49

0 days 00:00:00

0 days 00:01:15

docs

0000

subtract

0 days 00:08:59

0 days 00:05:50

0 days 00:02:15

feat(divide): added
division feature
with non-null divi-
sor check

git commit -a -m
"added divide fea-
ture, i know good
commit messages
look different”
added division

How did you How did you How did you How did you How did you How did you How did you How did you How did you How did you
like traditional like traditional like tradi- like traditional like traditional like tradi- like traditional like traditional like traditional like tradi-
Git? [l think Git? [l found tional Git? [I Git? [l think Git? [l found tional Git? [I Git? [l would Git? [l found Git? [l felt tional Git?
that | would the system thought the that | would the various thought there imagine that the system veryconfident [I needed to
like to use unnecessarily system was need the functions in wastoo much most people very cumber- usingthe sys- learn a lot of
this system complex.] easy touse.] support of this system inconsistency would learn sometouse.] tem.] things before
frequently] a technical were well in this sys- to use this | could get
person to be integrated.] tem.] system very going with
able to use quickly.] this system.]
this system.]
0 4 1 4 3 5 1 3 3 5 2
1 4 2 2 4 3 2 2 4 2 4
2 5 1 4 2 3 2 4 2 3 5
3 4 3 2 3 4 1 3 3 2 2
4 4 2 3 2 3 2 1 3 4 4
5 5 1 5 1 4 4 2 1 5 1
6 2 5 4 4 2 5 1 5 2 5
7 1 1 1 3 4 3 2 4 2 3
8 3 4 4 1 4 1 4 2 4 1
9 3 3 3 1 3 2 3 3 3 3
10 5 1 3 2 4 2 4 2 5 1
11 3 2 4 1 5 1 4 2 4 2
12 4 4 2 2 1 4 1 5 2 4
13 5 2 3 3 3 2 4 2 4 3
14 4 3 2 2 3 3 3 2 3 3

How long did it
take you?

How many au-
thors does the
feature add have?

Q1/4: How long
did it take you?

Which files are
touched to im-
plement feature
subtract?

Q2/4: How long
did it take you?

Which branch
has the newest
commit for feature
core? And is the
main branch up-
to-date regarding
that feature?

Q3/4: How long
did it take you?

What commit
message do you
choose?

2

3

4

0 days 00:04:22

0 days 00:20:05

0 days 00:00:00

0 days 00:05:27

0 days 00:05:13

0000

2

2

1

2

0 days 00:10:00

0 days 00:07:44

0 days 00:05:45

0 days 00:01:56

0 days 00:01:50

operations.py

src/operations.py
src/main.py

2

0000

main.py
tions.py

opera-

0 days 00:02:31

0 days 00:01:02

0 days 00:01:00

0 days 00:02:49

0 days 00:00:40

0000

0000

Yes, the main
branch is up to
date

main, Yes

main yes

0 days 00:12:00

0 days 00:00:00

0 days 00:05:20

0 days 00:01:58

0 days 00:04:50

0000 / dont know
how to associate
the feature with a
new commit?

git feature-commit

9a53dd4cb27dc2e83813k

—features Multi-
plyFeature Select-
ing features from
cli parameters
[MultiplyFea-

ture’] Features
[MultiplyFea-

ture’] assigned to

9a53dd4cb27dc2e83813k

Fetching feature-
metadata from
origin Pushing
feature-metadata
to origin Warning:
Feature Updates
could not be
pushed to remote
Added feature
multiply

Added
operation
Add operation for
multiplication

multiply

5

6

0 days 00:00:35

0 days 00:15:20

2

Tabea Réthe-
meyer Tabea

0 days 00:06:31

0 days 00:01:30

main.py,
tions.py
src/operations.py
src/main.py

opera-

0 days 00:00:37

0 days 00:00:30

0000

0000, yes

0 days 00:10:00

0 days 00:04:30

Added
feature
git commit -m
"feat(multiply):
add multiply func-
tion
Implemented the
multiply function
and added it to
the operations
list."

multiply

7

0 days 00:03:00

2

0 days 00:01:00

2

0 days 00:00:30

main

0 days 00:00:45

maxclerkwell @SURFNTE
/git-with-features-
experiment-ssh
(sb/multiply)>
vim src/opera-
tions.py maxclerk-
well@SURFNTERF
/git-with-features-
experiment-ssh
(sb/multiply)> git
add src/opera-
tions.py maxclerk-
well@SURFNTERF
/git-with-features-
experiment-ssh
(sb/multiply)>
git commit -m
"Adds multipli-
cation" Running
feature-pre-
commit Fetching
new feature-
metadata Error:
No features as-
sociated with the
staged changes.
Error: Pre-
commit checks
failed. maxclerk-
well@SURFNTERF
/git-with-features-
experiment-ssh
(sb/multiply) [1]>
git feature-add by-
add multiplication
-f src/opera-
tions.py Staging
selected files: [’sr-
c/operations.py’]
Staging files
Staged file: sr-
c/oneratione pv

10

11

12

13

14

0 days 00:01:49

0 days 00:04:36

0 days 00:10:00

0 days 00:23:27

0 days 00:09:45

0 days 00:10:46

0 days 00:10:52

2

2 authors

0 days 00:00:13

0 days 00:02:20

0 days 00:05:00

0 days 00:01:00

0 days 00:02:32

0 days 00:02:22

0 days 00:01:52

src/main.py, src/-
operations.py
2

src/operations.py,
src/main.py

src/main.py src/-
operations.py

2 files, src/-
main.py and
src/operations.py
src/main.py, src/-
operations.py

src/main.py; src/-
operations.py

0 days 00:00:08

0 days 00:00:18

0 days 00:04:43

0 days 00:00:50

0 days 00:00:46

0 days 00:00:50

0 days 00:00:56

main, it's up to
date
main. JA

main and the main
branch is up to
date

Main. Yes

main has the
newest update

main, no

main; yes

0 days 00:00:21

0 days 00:00:27

0 days 00:03:00

0 days 00:01:50

0 days 00:02:29

0 days 00:01:40

0 days 00:00:59

Added new opera-

tion multiply

git feature-commit
b6d8e6c283582e1bae af
—features multiply
Multiply function

add feature multi-
plication

"added multiplica-
tion feature"

$ git commit -a -
m "added multiply

feature"
$ it feature-
commit HEAD

—features multiply
added multiply

How did you How did you How did you How did you How did you How did you How did you How did you How did you How did you

like Git with like Git with like Git with like Git with like Git with like Git with like Git with like Git with like Git with like Git with

Features? Features? Features? [I Features? [I Features? [l Features? [l Features? [I Features? Features? [I Features? |l

[I think that [l found the thought the think that | found the var- thought there would imag- [I found the felt very confi- needed to

I would like system un- system was would need ious functions wastoo much ine that most system very dentusingthe Ilearn a lot of

to use this necessarily easy touse.] the support in this system inconsistency people would cumbersome system.] things before

system fre- complex.] of a technical were well in- in this sys- learn to use touse.] | could get

quently] person to be tegrated.] tem.] this system going with

able to use very quickly.] this system.]

this system.]

0 2 3 2 4 3 1 2 4 2 5
1 4 2 2 5 3 2 3 3 2 4
2 4 1 5 2 3 1 5 1 4 4
3 38 3 2 4 3 2 4 3 3 3
4 4 2 4 1 5 1 3 2 4 1
5 2 5 2 5 1 4 2 4 1 5
6 4 2 3 2 4 1 4 2 4 2
7 3 1 4 1 5 1 4 1 4 1
8 3 1 5 1 5 1 4 1 5 1
9 3 4 4 3 4 2 2 4 2 3
10 4 1 3 2 4 1 4 2 4 2
11 5 3 4 1 5 2 4 3 4 2
12 4 1 3 1 5 1 4 2 5 2
13 2 3 2 2 2 3 3 5 1 3
14 4 2 3 3 5 3 4 3 3 3

Task 1 - Task 2 - Task 3 - Task 4 - Task 1 - Task 2 - Task 3 - Task 4 -
Traditional Traditional Traditional Traditional Git with Git with Git with Git with

Git - Cor- Git - Cor- Git - Cor- Git - Cor- Features Features Features Features
rectness rectness rectness rectness - Correct- - Correct- - Correct- - Correct-
ness ness ness ness
0 O 1 1 0 0 1 0 0
1 0 1 0 1 2 1 0 2
2 2 0 2 2 2 1 2 2
3 0 1 0 2 2 0 2 2
4 2 2 2 2 2 2 2 2
5 2 1 1 2 2 2 1 2
6 2 0 0 2 2 2 1 2
7 1 0 0 2 2 1 2 1
8 2 2 2 2 2 2 2 2
9 1 2 0 0 2 1 2 2
10 1 2 0 0 2 2 2 2
11 1 2 0 2 2 2 2 2
12 2 2 1 2 2 2 2 2
13 2 0 0 0 2 2 1 2
14 2 1 1 0 2 2 2 2
Which setup do you prefer?
0 1
1 2
2 4
3 2
4 4
5 1
6 5
7 5
8 4
9 3
10 3
11 5
12 5
13 3
14 2

D. Additional Figures from the User Study Evaluation

Figures regarding correctness of tasks

Correctness Score
B Incorrect
mmm Partially Correct
mmm Correct

Proportion of Correctness by Tool within Git Knowledge

I
o

o -
(o] o

©
~

Proportion of Correctness

o
N

\ G\ i) \'eS\ 2 G'\’Q a““eﬁﬂ 2 G\\ ““eS\ na\ G\\ \“eS\ 2\ G\\
200 an F a wn Fe a(3\’&\0“ in Fe2 ogion Wit F ad\x\o“

I
o

F a\\“es\

Git Knowledge and Tool Combination

Figure 12: Overview of task correctness based on Git knowledge and tool setup, showing the proportion of
correct and partially correct answers for each group.

Proportion of Correctness by Tool within Group Correctness Score
B ncorrect

»n 1.0
@ - Partially Correct
‘§ 0.8 mmm Correct
8 06
k]
_5 0.4
=
§ 0.2
=]
0.0
" a\ G\ﬂ ““65) ", a\ G\“ “‘\\'65\
Nrad\\\of‘ " Grwitn £ kB,va\cx\\@“ @ Rt £

Group and Tool Combination

Figure 13: Comparison of correctness between groups A and B, highlighting how the use of traditional Git
and Git with Features affects task performance.

Correctness Score
Emm Incorrect
. Partially Correct
mmm Correct

Proportion of Correctness by Tool within Programming Experience

-
o

Proportion of Correctness
¢ © o
N o
-—
Q,
=

©
®

©
(N

oatures)

o
o
Ej
—r\
®
[S)
)
2, .
B

o aion@ & pe giiond & e it
@@ @G @&, 1@ TRe . 1@

1

Programming Experience and Tool Combination

Figure 14: Correctness of task solutions in relation to programming experience and tool setup, illustrating
how experience levels influence accuracy with different tools.

Proportion of Correctness by Tool within Feature-Oriented Tool Experience

% 1.0 Correctness Score
£ B |ncorrect
o 0.8 .
o mmm Partially Correct
8 0.6 mmm Correct
kS
504
._g
a 0.2
o
a

0.0

one GO

k‘(es,“ad\\

Feature-Oriented Tool Experience and Tool Combination

Figure 15: Impact of feature-oriented tool experience on task correctness, comparing outcomes between
traditional Git and Git with Features.

Figures regarding tool preference

User Preferences for Different Setups
1 |

| |‘
3

Figure 16: Pie chart showing the proportion of user preferences between Group A and Group B. This chart
illustrates the breakdown of participants’ tool preferences between the two groups.

4

Proportion of User Preferences by Feature-Oriented Tool Experience

Preference 1
Preference 2
Preference 3
Preference 4
Preference 5

o N o o =
[N EN o fed o

Proportion of Preferences

©
o

Feature-Oriented Tool Experience Category

Figure 17: Proportion of user preferences by feature-oriented tool experience. Participants were divided
based on their prior experience using feature-oriented tools. The chart illustrates how these
preferences vary between Git with Features and Traditional Git.

Preference 1
Preference 2
Preference 3
Preference 4
Preference 5

Proportion of User Preferences by Git Knowledge
1.0

0.8

0.6

0.4

0.2

Proportion of Preferences

) A 5
Git Knowledge Category

0.0

Figure 18: Proportion of user preferences by Git knowledge. Participants were grouped according to their
level of Git knowledge, showing their preferences for either Git with Features or Traditional Git.

E. Code Artifacts

The link to the research prototype can be found on GitHub:
https://github.com/isselab/feature-oriented-git. The code for the experiment in the user study can also
be found on GitHub: https://github. com/tabeatheunicorn/git-with-features-experiment

Listing 23: Build file - pyproject.toml. In this file, all package information including the dependencies and
scripts to be installed are listed.

[project]

name = "git_tool"

authors = [{ name = "Tabea Réthemeyer", email = "tabea.roethemeyer@rub.de" }]
license = { file = "LICENSE" }

description = "Support feature-oriented development workflows with git"
readme = "README.md"

version = "1.0.0"

requires —python = ">=3.10"

classifiers = |
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Development Status :: 3 - Alpha",

]

dependencies = |
"typer>=0.12,<0.13",
"pydantic[email]>=2.8,<3.0",
"GitPython>=3.1,<4.0",
"python-dotenv>=1.0,<2.0",
"prompt_toolkit >=3.0,<4.0",

]

[project.scripts]

git-feature —status = "git_tool.ci.subcommands.feature_status :app"
git-feature-info = "git_tool.ci.subcommands. feature_info :app"
git-feature-add = "git_tool.ci.subcommands.feature_add:app"

git-feature -blame = "git_tool.ci.subcommands. feature_blame :app"
git-feature—commit = "git_tool.ci.subcommands.feature_commit:app"
git-feature —commit-msg = "git_tool.ci.subcommands.feature_commit_msg:app"
git-feature —pre—commit = "git_tool.ci.subcommands.feature_pre_commit:app"

git-feature —commits = "git_tool.ci.subcommands.feature_commits:app"

https://github.com/isselab/feature-oriented-git
https://github.com/tabeatheunicorn/git-with-features-experiment

[build —system]
requires = ["hatchling"]
build -backend = "hatchling.build"

[tool.hatch.build.targets.wheel]
packages = ["git_tool"]

[tool.pytest.ini_options]
testpaths = ["test"]
addopts = "-s"

pythonpath = ["."]

[tool.black]
line-length = 80
target-version = [’'py38°]
include = ’\.pyi?$’
extend-exclude = '’
/(
The following are specific to Black, you probably don’t want those.
tests/data/
| profiling/
| scripts/generate_schema.py # Uses match syntax

)

IR

	Introduction
	Background
	Git as a Version Control System
	Feature-Oriented Software Development (FOSD)
	Variability Management and Variation Control Systems
	System PATH in the Context of Installation

	Methods
	Design Science Cycles
	Workflow and User Interface Design Approach
	Development of the Integration Concept
	Evaluation Methods

	Results for User Interface and Integration Concept
	Workflows using Git with Features
	User Interface Design
	Analyzing Git
	Git with Features Integration Concept

	Results from Git with Features Evaluation
	Prototype Implementation
	Evaluation Results

	Discussion
	Answering RQ 1
	Answering RQ 2
	Answering RQ 3
	Threats to Validity

	Conclusion
	Experiment Material
	User Study - Questions
	Experiment Data
	Additional Figures from the User Study Evaluation
	Code Artifacts

