
Mining of Security Features in Software Systems:
How Are They Implemented in Practice?

Yasser Hekal

Master Thesis – March 31, 2025
Chair of Software Engineering.

Supervisor: Prof. Dr. Thorsten Berger
Advisor: M.Sc. Kevin Hermann

Abstract

Ensuring the security of software systems is becoming increasingly difficult as mod-
ern applications grow in complexity and scale. A central challenge lies in identifying
and tracing the security features embedded within a codebase—features that are es-
sential for safeguarding sensitive information and maintaining system integrity. This
fragmentation poses a significant challenge for maintaining security, tracing vulner-
abilities, and applying patches efficiently. To address this, developers need reliable
strategies to identify, understand, and evaluate the security features embedded in
real-world systems.

This thesis addresses this open challenge by proposing a structured methodology for
identifying, locating, and analyzing security features in open-source Java projects.
Through an iterative and tool-assisted process, this work utilizes a refined keyword-
based search, and a custom-developed detection tool for library-based features. A
mining study of six real-world, security-relevant repositories from domains such as
healthcare, finance, and infrastructure—areas where security is particularly critical,
reveals patterns of security feature distribution, modular reuse, and deviations from
best practices. The study further categorizes features under a security taxonomy
and evaluates their implementation against known security guidelines.

The results of this work demonstrate that security features are rarely centralized,
often span multiple architectural layers, and tend to combine library-based mech-
anisms with custom logic. While established frameworks provide strong founda-
tions, gaps remain in areas such as traceability, structural consistency, and align-
ment with best practices. These insights emphasize the importance of modular
design, improved annotation and detection tooling, and greater developer support
for secure implementation. This work contributes actionable guidance and empir-
ical findings for future research and development of secure, maintainable software
systems.

Contents

List of Acronyms 1

1 Introduction 3
1.1 Motivation . 4
1.2 Research Questions . 4
1.3 Contributions . 6
1.4 Organization of this Thesis . 7

2 Background 9
2.1 Overview of Security Features . 9
2.2 Locating and Identifying Security Features 11
2.3 Challenges in Security Features Implementation, Maintenance and

Analysis . 12
2.4 Tools and Techniques for Features Traceability 13
2.5 Embedded Feature Annotations . 15

2.5.1 Helping Annotate Software (HAnS) 16
2.6 Security Features Taxonomy . 17
2.7 Related Work . 18

3 Methodology 21
3.1 Mining Study Workflow Design . 21
3.2 Repositories Selection Process . 22
3.3 Locating and Identifying Security Features 23

3.3.1 SonarQube . 23
3.3.2 Semgrep . 25
3.3.3 Keyword-Based Search . 26

3.3.3.1 Security Keywords and Rules 27
3.3.3.2 Embedded Feature Annotations 28
3.3.3.3 Security Features Sources 30

3.4 Security Features Analysis . 31
3.4.1 Exploring Security Features Distribution 31
3.4.2 Features Implementation Analysis 31

4 Implementation 33
4.1 Security Features Locating and Identification Process 33

4.1.1 Using SCA Tools in Locating and Identification Process . . . 33
4.1.1.1 SonarQube . 33

x Contents

4.1.1.2 Semgrep . 36
4.1.2 Keyword-Based Search . 37

4.1.2.1 Input Filtering . 38
4.1.2.2 Security Keywords and Rules 39
4.1.2.3 Embedded Feature Annotations 40

4.2 Security Features Classification and Labeling 41
4.2.1 Features Imported from Security Frameworks and Libraries . 43

5 Study Results 45
5.1 Security Features Locating and Identification Process Evaluation (RQ1) 45

5.1.1 SCA Tools Results . 45
5.1.2 Input Set Projects . 47
5.1.3 Keyword-Based Search Results 47

5.2 Categorizing Security Features (RQ2) 48
5.3 Security Library API Detection Tool Results (RQ3) 51
5.4 Security Library API Detection Tool Evaluation 52
5.5 Security Features Distribution Evaluation (RQ4) 54

5.5.1 Insights on Modular Design 55
5.6 Insights on Context of Use . 57
5.7 Comparison with Best Practices and Standards (RQ5) 57

6 Discussion 61
6.1 Implications for Software Security 61
6.2 Implications on Related Work . 62
6.3 Contribution Limitations . 62
6.4 Validity Threats . 63

6.4.1 Construct Validity . 63
6.4.2 Internal Validity . 63
6.4.3 External Validity . 63

6.5 Future Work . 64
6.5.1 Continuous Improvements . 64
6.5.2 Integrating ML Models . 64
6.5.3 Using LLM Models . 64

7 Conclusion 65

List of Figures 67

Bibliography 68

List of Acronyms

API Application Programming Interface
CSRF Cross-Site Request Forgery
CVE Common Vulnerabilities and Exposures
CWE Common Weakness Enumeration
ET Exploring Traces
FPGA Field Programmable Gate Array
HAnS Help Annotating Software
HCS Highly Configurable Software
IDE Integrated Development Environment
IoT Internet of Things
JSON JavaScript Object Notation
LDA Linear Discriminant Analysis
LSI Latent Semantic Indexing
MFA Multi-Factor Authentication
MuTT MultiThreaded Tracer
NVD National Vulnerability Database
OTP One-time password
OWASP Open Worldwide Application Security Project
SCA Static Code Analysis
SDLC Software Development Lifecycle
SEFF SEcurity Feature Framework
TOTP Time-based one-time password
URL Uniform Resource Locator

1 Introduction

The security of software systems is a critical aspect of their overall integrity and
reliability. Within a software system, various features are implemented, some of
which are specifically designed to achieve security objectives [1]. Security features
refer to specific functionalities or mechanisms integrated into software systems to
protect against vulnerabilities, unauthorized access, and data breaches [2]. Soft-
ware features in general may be implemented across various layers of the software,
including application logic, communication protocols, and data handling processes.
Features may sometimes be implemented in a scattered manner across the codebase,
with various components and modules containing security measures [3, 4]. This na-
ture is due to the incremental and collaborative development processes typical of
software systems, where different contributors may implement security features in-
dependently without a centralized or uniform approach [5].

The complexity of locating and identifying security features within a software system
raises significant concerns about the overall security posture [6]. If some of these
security features are scattered across various components, as is sometimes the case
with other functional features [3, 4], it could lead to inconsistent application of se-
curity measures. This inconsistency complicates the management and maintenance
of security features, potentially resulting in vulnerabilities that could compromise
the entire system [7]. We believe that if that scattered nature of security features
is significant and detectable, it may have adverse side effects on the overall security
integrity of the software system. Therefore, it is crucial to explore and uncover the
distribution of these features to ensure they are consistently applied, function cohe-
sively to provide a robust defense mechanism, and that their propagation throughout
the entire software system can be traced in the event of discovered vulnerabilities.
The aim of this thesis is to discover the implementation and nature of security fea-
tures in practice and to investigate whether they exhibit similar scattering patterns
as general features and to assess the security implications of such distribution on
the system.

The increasing complexity of software systems has made the task of ensuring robust
security more challenging than ever. A key aspect of maintaining a secure software
environment is the ability to accurately locate and analyze security features em-
bedded within the system [6]. These features, which may either be sourced from
established security frameworks or custom-implemented by developers, play a critical

4 1 Introduction

role in the system’s overall security posture. Security must be considered at every
stage of software development [8]. However, the wide variety of security threats
and the corresponding countermeasures make it challenging for developers to se-
lect and implement appropriate security features. While security standards provide
guidance, they are often too abstract to be directly applicable to specific security
implementations or too focused on low-level details to be practical for developers [8].

1.1 Motivation

The motivation for this thesis is rooted in the significance and criticality of secu-
rity features and the sensitive information they protect within software systems,
which urge the need to locate and analyze security features within software sys-
tems. Understanding whether a feature is derived from a security framework or
custom-implemented by developers is crucial for assessing the system’s security pos-
ture. Moreover, identifying how these features are distributed within the code and
how they interact with other components can reveal potential weaknesses and guide
improvements in security practices. This research aims to provide a structured ap-
proach to addressing these challenges, ultimately contributing to the development
of more secure software systems.

A critical aspect of this investigation is not only understanding the origin and dis-
tribution of security features but also evaluating their effectiveness in the context
of the entire software system. The challenge of translating security standards into
practical, effective implementations drives this thesis. Developers must not only se-
lect appropriate security features but also ensure their seamless integration into the
software architecture. Additionally, it is essential to assess whether these features
work cohesively to achieve the intended security goals. This work aims to explore
how security features, whether derived from frameworks or custom-built, are applied
in practice, and how their application can be optimized to more effectively address
security threats.

1.2 Research Questions

The challenge is to locate and identify security features , as well as discovering their
implementation in practice and their nature in the complex landscapes of software
systems. In order to address this challenge, several research questions have been for-
mulated, the answers to which will form the foundation of this work.

1.2 Research Questions 5

RQ: How are security features of software systems implemented in practice?

To investigate this question, a structured methodology is employed to locate, iden-
tify, and analyze security features within software systems. The investigation in-
volves exploring their implementation, distribution, and interactions across the soft-
ware architecture. The methodology ensures a robust evaluation of both custom-
implemented features and those derived from frameworks, with the ultimate goal
of enhancing security practices in software systems. This overarching question is
further divided into five sub-questions..

RQ1: How can security features be identified and located within the code of software
systems?

The process begins with the use of three approaches: SonarQube1, Semgrep2 and
a manual script using security-related keyword lists3 to systematically identify se-
curity features across the codebase and then eventually annotating these features
with Help Annotating Software (HAnS) annotations. This structured approach en-
sures comprehensive tagging of features, enabling precise localization and facilitating
deeper insights into their interactions and overall contribution to security objec-
tives.

RQ2: What security features exist in a software system?

Features in software systems, including security-specific functionalities like encryp-
tion or access control, are identified using a combination of keyword searches and
pattern recognition. These techniques leverage well-documented libraries and frame-
works to classify features effectively, laying the groundwork for understanding their
role and significance in the system’s architecture. .

RQ3: What security features are custom implemented by developers, and What are
integrated from security frameworks and libraries?

Beside categorizing the security features, those who are custom implemented by de-
velopers and those who are imported from security libraries and frameworks in the
security feature locating and Identification phase. This comparative analysis is con-
ducted to distinguish between custom-implemented security features and those de-
rived from established frameworks such as Spring Security4 or OWASP ESAPI5. This
step evaluates the integration and alignment of these features with best practices, as-
sessing their adequacy in addressing security challenges.

1https://www.sonarsource.com/
2https://github.com/semgrep/semgrep
3https://github.com/danielmiessler/SecLists
4https://spring.io/projects/spring-security
5https://owasp.org/www-project-enterprise-security-api/

https://www.sonarsource.com/
https://github.com/semgrep/semgrep
https://github.com/danielmiessler/SecLists
https://spring.io/projects/spring-security
https://owasp.org/www-project-enterprise-security-api/

6 1 Introduction

RQ4: How are security features distributed across the software architecture, and
what patterns can be observed in their distribution?

This question examines the scattering and distribution of security features within the
codebase. Static analysis tools and HAnS annotations provide a detailed view of how
these features are dispersed, offering insights into architectural patterns and their im-
pact on the software system’s overall integrity and security

RQ5: How secure are security features implemented, and do they follow the best
practices and security standards?

To assess the effectiveness and security robustness of identified security features, an
implementation-level analysis will be conducted on a selected subset of features. The
selection focused on those that address critical security goals, such as authentication,
access control, and secure data handling, as they are among the most impactful
and security-sensitive areas. Each chosen feature was evaluated semantically to
determine whether it fulfills its intended security purpose and whether it follows
recognized best practices and industry standards, such as those outlined by OWASP.
This evaluation aims to answer RQ5 and provide insights into how securely these
features are implemented in real-world software systems.

1.3 Contributions

In this thesis, the following key contributions are made to the field of software
engineering security, particularly within the domain of security features in software
systems:

Exploration of Security Feature Nature: This research identifies and explores
the nature of security features within software systems, shedding light on their char-
acteristics, distribution, and interaction with other components. This foundational
understanding addresses critical gaps in the literature on feature-specific security
practices.

Enhanced Traceability: The study enhances the traceability of security features
across various software layers, providing a clearer understanding of how these fea-
tures are distributed and integrated. By leveraging structured methods and existent
tools such as Sonarqube, Semgrep, HAnS annotations and customized scripts, this
contribution facilitates better navigation and analysis of complex software architec-
tures.

Systematic Methodology Development: A systematic methodology is devel-
oped to locate security features effectively, utilizing HAnS annotations alongside

1.4 Organization of this Thesis 7

supplementary analysis tools. This methodology introduces an innovative approach
to identifying security-related elements, significantly improving precision and effi-
ciency and including contextual considerations in security feature analysis.

Impact Analysis: The research provides a comprehensive analysis of the impact of
the complex nature of security features on the overall security of software systems.
It examines how these features influence system integrity, identifying potential vul-
nerabilities and offering insights to mitigate them.

Metrics and Insights for Modularity: The thesis introduces metrics and find-
ings that evaluate the modularity and integration of security features within the
broader landscape of software functionalities. These metrics support the assessment
of feature cohesion and the refinement of security measures.

Guidelines for Best Practices: Practical guidelines are presented to ensure con-
sistent implementation of security features, aligned with best practices and estab-
lished security standards. These recommendations assist developers in maintain-
ing uniformity and reliability across the codebase. This would provides actionable
guidelines for effectively integrating security measures into existing security features,
enabling smoother adoption and implementation of robust defenses in real-world
software systems.

1.4 Organization of this Thesis

This thesis is structured to provide a comprehensive and systematic overview of
the study. Chapter 1 introduces the research problem, motivation, and objectives.
Chapter 2 presents the necessary background on security features and traceability.
Chapter 3 details the methodology, outlining the overall mining workflow and each
phase of the process. Chapter 4 describes the implementation of the developed tools
and techniques used to locate, annotate, and categorize security features. Chap-
ter 5 presents the study results, including the evaluation of each locating method,
feature categorization, distribution analysis, and comparisons with best practices.
Chapter 6 discusses the broader implications, limitations, and validity threats of
the study, and outlines potential directions for future work. Finally, Chapter 7 con-
cludes the thesis with a summary of the main findings.

2 Background

This chapter provides a glimpse of related work and an overview of security features,
highlighting their critical role in software systems. It discusses the challenges de-
velopers face in implementing and analyzing security features and outlines the tools
and techniques used to enhance their traceability. Finally, the chapter introduces
Helping Annotate Software (HAnS) as a key tool employed in this thesis for anno-
tating and managing security features.

2.1 Overview of Security Features

Features were defined in many ways in the literature, for Berger et al. a feature is
an abstract representation of functionality that characterizes the capabilities or be-
haviors of software systems [9]. More precisely, a feature can be defined as “a logical
unit of behavior specified by a set of functional and non-functional requirements”[10].
Features may also represent characteristics distinguishing a system from others in a
family of related systems [11]. Alternatively, features can be described as user-visible
aspects of a system [12, 13] or as aspects that provide added value to a customer [14].

Hermann et al. [6] developed a taxonomy of 68 functional security features through
a systematic literature review (see Fig. 2.1), aiming to bridge the gap between high-
level security standards and practical implementation. Their objective was to assist
developers in selecting and applying security measures more effectively by mapping
these features to recognized security standards such as ISO/IEC 27000, Common
Criteria, NIST SP800-53, and the NIST Cybersecurity Framework. Additionally,
they examined the implementation of these security features across 21 popular se-
curity frameworks, helping developers align their security practices with established
standards. In this thesis, I will utilize the taxonomy developed by Hermann et al.
[6] in the Categorizing Security Features process. This will help organize and
classify the security features identified within the software systems, enabling a struc-
tured analysis of their implementation and distribution.

10 2 Background

Figure 2.1: Top-level of Security Features Taxonomy [6]

In the context of this thesis, we specifically consider security features, which are
functionalities designed to address security issues by preventing attacks or fulfilling
security requirements [1]. These features must be carefully planned, even at the
architectural level, as missing or improperly implemented security features can re-
sult in severe vulnerabilities and huge impact in software systems [15, 16]. Security
features can realize both functional and non-functional requirements. However, this
thesis focuses on functional security features, which are concrete security measures
manifesting in the codebase to address specific functional requirements of a software
system[6]. Examples include encryption mechanisms, authentication protocols, and
access control features. These features are critical for maintaining the integrity, con-
fidentiality, and availability of a system, underscoring their essential role in secure
software development.

Blythe et al. (2019) examined the security features of consumer Internet of Things
(IoT) devices by analyzing user manuals and support pages to assess how security is
communicated to consumers [17]. Their study highlighted that IoT devices often lack
built-in security measures, leaving users vulnerable to cyber threats such as hacking
and large-scale cybercrime attacks. Furthermore, even when security features are
available, consumers do not always utilize them effectively. A key finding was the
lack of transparency from manufacturers, who provide minimal publicly available
information about device security, making market surveillance difficult. The au-
thors advocate for government intervention to establish clearer security guidelines
and ensure that security information is readily accessible to consumers.

Druyer et al. (2015) explored security features in modern Field Programmable
Gate Array (FPGA)s, assessing how vendors like Altera, Microsemi, and Xilinx
implement security mechanisms [18]. The study categorized security threats, in-
cluding IP protection, data confidentiality, and denial-of-service risks, and com-
pared vendor-specific security measures. Their findings highlighted the strengths
and weaknesses of current FPGA security implementations, focusing on hardware-
level security rather than software security frameworks.

2.2 Locating and Identifying Security Features 11

Lingham et al. (2019) examined the integration of security features in software
development, emphasizing the importance of incorporating security at each phase
of the Software Development Lifecycle (SDLC) [19]. The study discussed common
vulnerabilities arising from neglecting security early in development and proposed
methodologies to embed security practices, including automated security testing and
developer training.

While previous studies have explored security features in IoT devices, FPGAs, and
software development processes, my work differs in its focus on identifying, annotat-
ing, and tracking security features within software repositories. Unlike Blythe et al.
(2019) [17], which examines security features utilization by consumers in IoT devices,
my study investigates their actual presence and usage in software codebases. Com-
pared to Druyer et al. (2015) [18], which focuses on hardware security in FPGA, my
research targets software security features traceability and implementation. Fur-
thermore, while Lingham et al. (2019) [19] emphasizes security best practices in
SDLC, my work provides a systematic approach to locating and analyzing security
features within existing software systems and their implementations best practices.

2.2 Locating and Identifying Security Features

Locating and identifying security features in software systems has long been a chal-
lenging and cumbersome task. Security features are often scattered across various
components of a software system, making their identification labor-intensive and
error-prone[3, 4]. Traditional approaches to feature location rely on manual efforts,
where developers must trace security-related code fragments across the entire code-
base. However, the lack of standardized documentation and the evolving nature of
software systems exacerbate these difficulties [6].

Automated feature location techniques have been proposed to address these issues,
including static and dynamic analysis methods. Static analysis techniques lever-
age lexical and syntactic analysis to identify feature-related code elements, while
dynamic approaches rely on execution traces and user interactions to infer feature
locations [20]. Despite their potential, these techniques often produce high false-
positive rates, require large training datasets, and struggle with fine-grained feature
identification [20], which is a fact that we will encounter and verify it in this work
(more in section 5.1.1).

12 2 Background

2.3 Challenges in Security Features Implementation,
Maintenance and Analysis

Software engineers and programmers, while skilled in software development, are not
inherently security experts [21]. The specialized knowledge required to implement
robust security features is often beyond their typical training, leaving gaps in secu-
rity practices [21]. This challenge is compounded by the usability issues associated
with security libraries and frameworks [22]. Research has shown that these tools,
while powerful, can be unintuitive and overly complex, leading to improper or incom-
plete integrations [22]. The result is a higher likelihood of vulnerabilities introduced
during development, stemming from both human error and the lack of accessible,
developer-friendly tools [1].

Khwaja et al. [2] proposed a SEcurity Feature Framework (SEFF) aimed at en-
hancing the security of software systems by integrating security features directly
into programming languages. While their work focuses on security feature coverage
within programming languages and identifies gaps in this area, my thesis differs by
concentrating on the identification and analysis of security features within software
systems as a whole, rather than focusing on the programming languages themselves.
This thesis seeks to explore how security features are distributed and implemented
across the broader software architecture, contributing to overall system security.

Maintaining and analyzing security features pose additional hurdles, particularly due
to the complex nature of these features within software systems. Security features are
often scattered across various components, making their identification and tracking
laborious and error-prone [5, 20]. This scattering, combined with insufficient trace-
ability mechanisms, complicates the task of locating, updating, or analyzing security
features.

A common approach to security analysis in software systems involves the use of static
and dynamic analysis tools, such as SonarQube1, Semgrep2. These tools scan code-
bases to detect vulnerabilities, misconfigurations, and code quality issues. However,
their fundamental limitation is that they do not process codebases as a structured
collection of features but rather analyze them as an undifferentiated whole. This
lack of feature-level awareness makes them ineffective for tracking, maintaining, or
analyzing security features in a structured manner. For instance, while SonarQube
provides valuable insights into security weaknesses, it does not facilitate the iden-
tification or traceability of security features within a system. Similarly, Semgrep

1https://www.sonarsource.com/
2https://github.com/semgrep/semgrep

https://www.sonarsource.com/
https://github.com/semgrep/semgrep

2.4 Tools and Techniques for Features Traceability 13

enables pattern-based security rule detection, but it does not assist in understand-
ing how security features are implemented or distributed within a codebase.

Dynamic analysis tools, such as Burp Suite3, focus on runtime security testing,
identifying vulnerabilities through simulated attacks. While these tools play a cru-
cial role in security validation, they do not address security feature traceability and
maintenance within a software system. Without explicit annotations or feature-
aware tracking mechanisms, static and dynamic analyzers fail to provide developers
with the necessary insights into how security features evolve, interact, and contribute
to overall system security.

During security incidents or audits, the inability to quickly locate these features can
result in significant delays and resource expenditure [2]. The process of manually
tracing features across a codebase is not only time-intensive but also prone to over-
sight, further elevating the risks associated with vulnerabilities [3].

The challenges in implementation, maintenance, and analysis translate directly into
increased costs for organizations [7]. Prolonged vulnerability resolution times, higher
maintenance overheads, and potential damage from security breaches underscore the
importance of addressing these issues effectively [23]. These challenges necessitate
improvements in developers security trainings and awareness, the design of usable
security libraries, and the adoption of annotating tools that facilitate effective trace-
ability and management of security features [6].

2.4 Tools and Techniques for Features Traceability

Feature traceability involves mapping features to their corresponding code compo-
nents or fragments, facilitating tasks such as program comprehension, maintenance,
and debugging. Several tools and techniques have been developed to assist in this
process. While extensive research has been conducted on feature location in software
systems, most studies, such as those by Rubin and Chechik [5] and Krüger et al.
[24], focus on general features rather than the specific challenges of locating security
features, such as their distribution within the software system, critical importance,
and interaction across system layers. These works highlight various techniques for
identifying features but do not address these complexities. Additionally, Krüger et
al. [25] emphasize traceability for general features, and Berger et al. [9] explore
feature identification in large-scale systems, yet neither directly considers the risks

3https://portswigger.net/burp

https://portswigger.net/burp

14 2 Background

posed by misconfigured or poorly implemented security features.

Passos et al. [26] introduce a feature-oriented perspective on software evolution,
arguing that managing changes at the feature level can significantly enhance soft-
ware traceability, maintenance, and evolution. Their approach focuses on automatic
traceability, analysis, and recommendations to manage evolving software systems.
They propose that features provide a common ground for all stakeholders, allowing
for better communication and understanding of changes over time. While their work
presents a strong case for feature-aware software evolution, it does not specifically
address security features, which require additional considerations such as their dif-
ferent nature, their compliance with security best practices, vulnerability mitigation,
and risk assessment.

This thesis aims to fill this gap by focusing specifically on locating and analyzing
security features, addressing their technical implementation, distribution, and secu-
rity risks. Unlike previous research that considers feature traceability in a broad
sense, this work explores how security features evolve, interact, and contribute to
overall system security, ensuring they can be effectively maintained and adapted as
software evolves.

FeatRacer

FeatRacer is a tool that combines proactive feature recording and automated fea-
ture location in a way that allows developers to proactively and continuously record
features and their locations during development to address the challenges of locat-
ing features in codebases [20]. It uses embedded code annotations and a machine-
learning recommender to help developers continuously record features and reminds
them of missed annotations. FeatRacer enables fine-grained traceability and sig-
nificantly outperforms traditional methods like Latent Semantic Indexing (LSI) and
Linear Discriminant Analysis (LDA), reducing false positives and improving fea-
ture identification. Evaluations across multiple open-source projects highlight its
effectiveness in simplifying and enhancing feature traceability. FeatRacer records
and tracks features during development, making it effective for real-time feature
management but not for post-development security feature analysis. My approach
identifies, annotates, and classifies security features after development, which is a
more complex, error-prone and harder task for developers.

2.5 Embedded Feature Annotations 15

MuTT and ET Tool Suite

MultiThreaded Tracer (MuTT) and Exploring Traces (ET) Tool Suite is a pair of
tools designed to trace multi-threaded, event-driven Java programs, aiding in fea-
ture location and debugging. MuTT requires no instrumentation to generate traces,
while ET allows developers to browse and analyze specific parts of the trace graphs
[27]. A case study on Eclipse demonstrated that this suite significantly improves
feature location productivity, with ET effectively complementing MuTT in tracing
and narrowing focus areas. MuTT and ET focus solely on tracing execution paths
but do not identify, classify, or analyze security features. My approach goes beyond
tracing by locating, annotating, and categorizing security features, examining their
distribution, and architectural impact within the software system.

Test2Feature

Test2Feature4 is a tool designed to address test-to-feature traceability challenges
in Highly Configurable Software (Highly Configurable Software (HCS)) [28]. It links
test cases to features by analyzing the source code of annotated HCSs, providing out-
puts such as feature-related code lines, test-related code lines, and the mapping be-
tween test cases and features. Relying solely on static code analysis, Test2Feature
simplifies tasks like regression testing, feature management, and HCS evolution, fill-
ing gaps left by traditional variability model-based approaches or tools that only
link test cases to code lines. Although Test2Feature improves traceability by link-
ing tests to feature implementations, it does not focus on security features or their
contextual impact on software systems. My approach not only identifies security
features but also examines their architectural distribution and adherence to security
best practices, providing a more comprehensive analysis of security-related elements
within a codebase.

2.5 Embedded Feature Annotations

Embedded feature annotations are in-code markers that label and document specific
functionalities directly within the source code, greatly enhancing program compre-
hension and feature traceability [29]. They allow developers to systematically track
which code fragments implement particular features, thereby facilitating mainte-
nance and evolution in complex systems. In addition, these annotations provide a
common language for stakeholders, improving communication and coordination dur-
ing development [29]. Several tools have adopted this approach; for example, HAnS

4https://github.com/willianferrari/Test2Feature

https://github.com/willianferrari/Test2Feature

16 2 Background

leverages embedded annotations to record and trace features, while other Java-based
tools such as FeatureHouse5 and Featureous6 also support feature traceability. I
chose HAnS among these options because it provides an integrated plugin that
seamlessly fits into popular development IDEs, making it the optimal choice for my
approach. In my method, HAnS will serve as the primary annotating tool to mark
security features, enabling an enhanced traceability, quick navigation and seamless
labeling of their implementation, distribution, dependencies, and overall impact on
the software architecture.

2.5.1 Helping Annotate Software (HAnS)

HAnS7 (Helping Annotate Software) is an IDE plugin integrated into JetBrains tools,
designed to support developers in annotating software assets with features [30]. The
plugin enables developers to record feature locations directly during the coding pro-
cess, providing functionalities such as code completion and syntax highlighting to
streamline the task. Using HAnS, features can be mapped to various software assets,
including files, folders, and specific code fragments. For instance, as shown in Fig.
2.2, developers can map an entire file to a feature using .feature-to-file files or
assign a feature to an entire folder and its sub-elements with .feature-to-folder
files.

Figure 2.2: Feature model, feature-to-file, and feature-to-folder Mappings Example
[29]

5https://github.com/joliebig/featurehouse
6https://featureous.org/
7https://github.com/isselab/HAnS

https://github.com/joliebig/featurehouse
https://featureous.org/
https://github.com/isselab/HAnS

2.6 Security Features Taxonomy 17

For more granular mapping, features can be assigned within a file using code anno-
tations, which serve as additional descriptive comments in the code. These annota-
tions come in two main forms: inline annotations, such as &line[FeatureName], for
assigning a single feature to a specific line of code, and block annotations, such as
&begin[FeatureName] - &end[FeatureName], to map an entire code block to a feature
like the example in figure 2.3 .

Figure 2.3: Feature Block Annotation Example

HAnS also provides tools to define and manage the hierarchical relationships be-
tween features within a project. This structure is captured in a .feature-model file,
located at the project root. This file is a critical component of HAnS, ensuring
that features are well-defined and consistently applied throughout the project. As a
core component of this study, HAnS will play a pivotal role in annotating security
features, tracking their usage across codebases and representing their distribution
among software system components. This functionality is essential for achieving the
research objectives of this work.

2.6 Security Features Taxonomy

To systematically classify and analyze security features, this study adopts a taxonomy-
based approach inspired by the work of Hermann et al. [6]. This taxonomy was de-
veloped through a systematic literature review and an empirical analysis of security
frameworks to establish a structured representation of security features in software
systems. Unlike abstract security principles, security features in this taxonomy are
defined as functional components that directly address security concerns by prevent-
ing attacks, enforcing security policies, or ensuring system integrity. These features
manifest in the source code as concrete security mechanisms such as authentication,
encryption, or access control implementations.

The taxonomy is structured into five main security feature categories, each repre-
senting a distinct aspect of security functionality. These categories were derived
by reviewing existing security standards, security frameworks, and best practices,
ensuring that they capture real-world security feature implementations. Figure 2.1

18 2 Background

illustrates the top-level security feature categories, presenting a hierarchical overview
of security functionalities within the taxonomy.

Defining subcategories of security features provides a more granular classification
that captures the diversity of security implementations. Each main security feature
category is further divided into subcategories, ensuring a structured and systematic
approach to analyzing security features across different software systems. These
subcategories were identified based on common security practices in software de-
velopment and patterns observed in security frameworks. By structuring security
features at this level, this task directly addresses RQ2. Through this classification,
the study provides a comprehensive understanding of the various security-related
functionalities present in modern software systems, enabling a more effective evalu-
ation of their role, implementation, and impact.

For instance, within the "Secure Data Handling" category, subcategories such as data
validation, data sanitization, secure storage, and retention control define different
security aspects related to handling sensitive information. These subcategories (see
Fig. 2.4) reflect various techniques used to protect data integrity, confidentiality,
and secure processing within a system.

Figure 2.4: Sub-features of the security feature Secure Data handling [6]

2.7 Related Work

Mining Software Vulnerability Characteristics

Li et al. proposed a vulnerability mining algorithm to extract essential character-
istics of software vulnerabilities using data mining techniques [31]. Their method
processes vulnerability reports from open-source databases like CVE, CWE, and NVD,

2.7 Related Work 19

identifying patterns and textual indicators that describe vulnerabilities. They utilize
text mining techniques to categorize vulnerabilities into essential and non-essential
groups, aiming to enhance understanding of software security risks. Their results
demonstrate a recall of approximately 70% and a precision of 60%, highlighting
improvements over traditional manual vulnerability classification. However, this ap-
proach primarily focuses on vulnerability detection and classification from databases
rather than directly identifying and classifying security features within software
repositories and analyzing them.

Mining Security Changes in FreeBSD

Mauczka et al. conducted a repository mining study on FreeBSD8, focusing on
security-related code changes over time [32]. Their method applies a lexical ap-
proach to classify security commits based on commit message keywords, filtering
security-related modifications from FreeBSD’s version control history. The study
explores the evolution of security changes, linking them to security advisories and
assessing their distribution across software modules. While their approach provides
insights into historical security trends, it does not attempt to identify, classify, or
analyze security features themselves. Instead, it focuses on tracking security-related
commits, which may not fully capture the presence or structural role of security
features in software architectures.

Mining Security-Sensitive Operations in Legacy Code

Ganapathy et al. introduced a static analysis approach that mines security-sensitive
operations in legacy code using concept analysis [33]. Their method identifies id-
iomatic resource manipulations - termed fingerprints - that indicate security-sensitive
operations, such as access control checks. The approach is semi-automated, requiring
a domain expert to refine mined results, and is evaluated on three real-world sys-
tems. While effective in pinpointing security-sensitive operations, the study focuses
on retroactively securing legacy systems rather than understanding how security
features are implemented and distributed across modern software architectures.

While previous studies have explored aspects of security-related repository min-
ing, no prior research has specifically focused on mining security features within
software systems. Existing works have either analyzed vulnerability reports [31],
tracked security-related commit messages without feature-level insights [32] or iden-
tified security-sensitive operations in legacy code for policy enforcement [33]. In

8https://www.freebsd.org/

https://www.freebsd.org/

20 2 Background

contrast, this study is the first of its kind to systematically mine security features,
rather than vulnerabilities or security changes, by directly locating and annotating
them within source code. By employing a semi-automated approach that leverages
security-related keywords and HAnS annotations, this study not only identifies se-
curity features but also analyzes their distribution, categorizes them as custom or
framework-based, explores their interactions with other components, and assesses
their adherence to best practices. This feature-centric perspective fills a critical gap
in security research, providing a new foundation for understanding how security fea-
tures are structured and maintained in modern software architectures.

3 Methodology

This chapter describes the study design and methodology adopted for mining se-
curity features in software systems. It details the repository selection process, the
tools and technologies used (SonarQube, Semgrep, and custom scripts), and the
systematic approach for locating, identifying and annotating security features. Fur-
thermore, it elaborates on the categorization of these features, their functional goals,
and the analysis of their distribution and impact on the overall software architec-
ture.

3.1 Mining Study Workflow Design

The methodology for this thesis is designed to locate, identify, categorize, and an-
alyze security features within software systems. This process involves several key
phases, each aimed at providing a comprehensive understanding of how security
features are implemented, distributed, and their impact on the overall software ar-
chitecture. The overview of the methodology workflow of this thesis can be found
in figure 3.1.

Figure 3.1: Mining Study Workflow Design

22 3 Methodology

3.2 Repositories Selection Process

The repository selection process is a critical phase in this mining study, designed
to ensure that the selected software repositories effectively serve the research objec-
tives and yield meaningful insights into the nature of security features in software
systems. This study employs a set of well-defined criteria to filter and select reposito-
ries, balancing quality, relevance, and diversity to support a comprehensive analysis.

A total of 6 repositories were targeted for this study. This number is justified by the
qualitative nature of the research, where an overly large dataset might dilute the
depth of analysis, while too few repositories would limit the generalizability of the
findings. The chosen programming language is Java, one of the most widely used
languages in software development, particularly for large-scale and enterprise-level
systems [34], making it an ideal choice for observing the implementation and distri-
bution of security features.

The selection criteria also include a minimum of 100 stars and a relative high num-
ber of forks on GitHub (more than 300 Forks), reflecting the repositories’ popularity
and widespread usage within the developer community. This criterion ensures that
the selected projects are not only well-maintained but also actively used, thereby
increasing the likelihood of encountering well-implemented security features. To cap-
ture potential variations in security feature implementation, repositories of varying
sizes and complexities were selected. This diversity allows the study to explore how
factors such as project scale and architectural complexity influence the design and
distribution of security features. Additionally, only the latest stable release versions
of the repositories were included to ensure that the analysis is based on the most
secure and stable codebase versions, minimizing the impact of unresolved bugs or
incomplete implementations.

Native security projects that serve explicit security purposes and goals, which pre-
dominantly consist of security features, were deliberately excluded from the selection
process. This exclusion ensures that the focus remains on security features embedded
within software systems developed for general purposes other than security, such as
healthcare, banking, financial services, and data storage. These domains were cho-
sen due to their inherent need to handle sensitive and protected information, making
them more likely to incorporate diverse and sophisticated security features within
their codebases. This repository selection process lays a solid foundation for the
subsequent phases of this mining study, ensuring that the selected datasets are both
relevant and representative, thereby enabling a thorough investigation into the im-
plementation, distribution, and contextual usage of security features in real-world
software systems.

3.3 Locating and Identifying Security Features 23

3.3 Locating and Identifying Security Features

Identifying security features in software systems is inherently challenging due to their
often scattered nature across multiple components and the lack of standardized doc-
umentation [3, 4, 6]. While automated techniques like static and dynamic analysis
exist, they often suffer from high false-positive rates and difficulties in detecting fine-
grained features—limitations further examined in this study (see Section 5.1.1). In
response to these challenges, this study adopts an iterative process for locating and
identifying security features. Rather than applying a one-size-fits-all methodology,
I experiment with various tools and approaches, leveraging the insights gained to
determine the most effective strategies for accurate feature identification. This adap-
tive strategy involves refining and adjusting the feature identification process based
on the accuracy and effectiveness of the results, ensuring continuous improvement
and gradually enhancing both efficiency and precision. By adopting this methodol-
ogy, this part of the study aims to answer how can security features be identified and
located within the code of software systems (RQ1). Through systematic refinement,
the approach ensures that security feature identification is comprehensive, reliable,
and scalable. The following sections will detail the exact methodology used in this
study, including the tools and techniques applied to optimize the identification and
classification of security features within software repositories.

In the subsequent sections, I will provide a detailed explanation of the tools and
technologies utilized in the locating and identifying security features process, elab-
orating on their functionalities, implementation and desired outcome within this
study.

3.3.1 SonarQube

SonarQube is a widely used static analysis tool designed to assess code quality, de-
tect vulnerabilities, and enforce coding standards in software systems. It operates
by scanning source code without executing it, identifying potential issues such as se-
curity vulnerabilities, code smells, and bugs. In software security, SonarQube plays a
crucial role in detecting misconfigurations, weak implementations of security mecha-
nisms, and adherence to best practices, making it a powerful tool for ensuring secure
software development.

One of SonarQube’s interesting offered capabilities is Security Hotspots, which
highlight sections of code that require developer review due to potential security
risks. Unlike critical vulnerabilities that require immediate remediation, security
hotspots indicate areas where security-sensitive code implementations exist but
may not necessarily be exploitable unless misused. These hotspots are flagged when

24 3 Methodology

SonarQube detects weak implementations of security-related methods, such as im-
proper authentication mechanisms, inadequate encryption, or insecure input han-
dling.

In the context of this study, Security Hotspots may provide valuable insights into
the locations of security features within software repositories. Since they flag any
security-relevant implementation that may pose a risk, they serve as indicators of
security feature presence, allowing for systematic identification and classification of
security features across different codebases. By leveraging SonarQube’s hotspot de-
tection, this study enhances the accuracy of locating security features, ensuring that
even potentially insecure or misconfigured implementations are considered during
analysis. To integrate SonarQube into this security feature mining study, the follow-
ing structured deployment methodology was followed:

Repository Setup

The selected repositories were cloned and built locally to allow for comprehensive
source code analysis, since repositories can not be scanned by SonarQube unless they
were build first.

IDE Integration with SonarQube for IDE

SonarQube for IDE 1, a lightweight plugin for IntelliJ IDE, was used to perform real-
time static analysis within the development environment, providing an immediate re-
view of potential security hotspots before deeper analysis.

SonarQube Deployment via Docker

A SonarQube server was set up in a Docker container, running locally to enable
continuous scanning of repositories while storing and managing analysis results ef-
fectively.

API-Based Data Extraction

To extract and filter relevant security feature data, a Python script was developed
to interact with the SonarQube API, retrieving findings related to security hotspots
and storing the extracted information in JSON-formatted files for further processing
and classification.

1https://plugins.jetbrains.com/plugin/7973-sonarqube-for-ide

https://plugins.jetbrains.com/plugin/7973-sonarqube-for-ide

3.3 Locating and Identifying Security Features 25

Filtering and Structuring the Findings

The extracted security hotspots were then filtered and categorized based on their
relevance to security features, ensuring that only meaningful security-related code
fragments were considered in the final dataset.

3.3.2 Semgrep

Semgrep is a lightweight static analysis tool designed for fast, pattern-based code
scanning. Unlike traditional static analysis tools, Semgrep provides a simplified and
highly customizable approach to detecting security vulnerabilities and enforcing best
practices in codebases. It operates by matching predefined or custom security rules
against source code, allowing developers to identify potential vulnerabilities, insecure
coding patterns, and misconfigurations without requiring complex configurations.

Similar to SonarQube, Semgrep is used in software security to identify weaknesses
in security-relevant code, such as improper authentication, missing input validation,
and the use of weak cryptographic functions. However, Semgrep stands out for its
usability and flexibility, offering a more user-friendly experience with minimal setup
requirements. It integrates directly with Python, allowing security scans to be per-
formed through simple scripts, making it a lightweight yet powerful alternative to
traditional static analysis tools.

Given its ease of use and integration capabilities, Semgrep was deployed in this study
using a script-based approach to facilitate efficient security feature mining and an-
other source for it. The methodology consists of the following steps:

Scanning with Python

A Python script was developed to automate the security analysis process. This
script takes only the URL of the mined repository as input, clones the reposi-
tory, and executes Semgrep security scans based on predefined security-related pat-
terns.

Filtering and Processing the Findings

The output of Semgrep includes various security warnings and detected patterns.
The script processes these results to filter only the relevant security-related findings
that contribute to security feature identification.

26 3 Methodology

Exporting Data in JSON Format

The filtered security findings are then structured and stored in a JSON file, ensuring
that the extracted security feature data is well-organized and readily available for
further analysis and classification.

3.3.3 Keyword-Based Search

While SonarQube and Semgrep provide valuable insights into security weaknesses,
they have a fundamental limitation, that is, they primarily detect security fea-
tures with vulnerabilities or improper implementations. This means that well-
implemented security features, which do not raise warnings or trigger security hotspots,
remain undetected by these tools. As a result, relying solely on static analysis tools
would create a biased and incomplete picture of security feature distribution within
the studied repositories.

To overcome this blind spot and ensure a more comprehensive and holistic approach,
a keyword-based search was developed to expand the security feature identification
process beyond vulnerability detection. This search is designed to systematically
scan repositories for security-related implementations, regardless of their correct-
ness or vulnerability status.

The keyword-based search was designed to operate efficiently with minimal input
requirements while ensuring thorough and scalable security feature mining. The
methodology consists of the following steps:

Automated Repository Processing

Similar to the previous tools, the script takes only the URL of the mined repository as
input, automating the cloning and file analysis process.

Input Filtering

To reduce false positives, the script implements context-based filtering to ensure that
the identified keywords correspond to actual security feature implementations rather
than generic or unrelated code snippets. For instance, it ignores comments within
the source code to prevent irrelevant matches. Additionally, testing functions are
excluded, as they are not considered security-related within the scope of this study.
The script also filters out any pre-existing HAnS-annotated features, as these have
already been identified and labeled.

3.3 Locating and Identifying Security Features 27

Data Structuring and Storage

The extracted security-related findings are stored in a structured JSON format, facil-
itating further categorization, annotation, and analysis.

3.3.3.1 Security Keywords and Rules

The security features considered in this study were structured based on the secu-
rity features taxonomy proposed by Hermann et al. [6]. This taxonomy provides
a systematic classification of security features, ensuring that the keyword selection
process aligns with established security feature categories. A detailed description of
this taxonomy was provided in Section 2.6.

Each sub-category within the taxonomy was assigned a set of relevant security-
related keywords, which were extracted from SecLists, a well-known repository
compiling security-related keyword lists from various sources2. An example of this
keywords-features mapping can be found in figure 3.2. By leveraging SecLists,
this study ensures that security feature identification relies on widely recognized
and comprehensive keyword datasets, improving detection accuracy and complete-
ness. And by mapping the security keywords to security feature categories and
sub-categories, we investigate what features exist in a software system ((RQ2).

Figure 3.2: Keywords-Features Mapping Examples

Given the complexity and variability of security features, the keyword list is con-
tinuously refined through an iterative improvement process. The goal is to enhance

2https://github.com/danielmiessler/SecLists

https://github.com/danielmiessler/SecLists

28 3 Methodology

precision and minimize false positives by dynamically adjusting the keyword set
based on real-world validation. This process consists of the following adjustments:

Eliminating Keywords with High False Positive Rates

If a keyword frequently identifies irrelevant code segments, such as generic logging
functions or unrelated system calls, it is removed from the list to enhance accu-
racy.

Adding Newly Observed Keywords and Patterns

If recurrent security-related terms or code patterns are identified during output vali-
dation, they are incorporated into the keyword list to improve detection capabilities.

By employing this adaptive keyword-based approach, this study ensures a compre-
hensive yet precise method for identifying and locating security features within soft-
ware repositories. The iterative refinement process guarantees continuous improve-
ment, making security feature detection more reliable and scalable over time.

3.3.3.2 Embedded Feature Annotations

To enhance the efficiency of validating and navigating security feature locations,
the Help Annotating Software (HAnS) plugin3 was used in this study and its an-
notations format was generated by the script, enabling structured feature labeling
directly within the source code. This allows for a more systematic approach to iden-
tifying and reviewing potential security feature locations while leveraging HAnS’s
seamless compatibility with IntelliJ IDE4 for efficient navigation.

In this study, HAnS annotations are automatically inserted into the source code at
positions where potential security features are detected. When the script identifies
one or more security-related keywords within a particular line of code, it flags that
line as a potential security feature location. However, to avoid redundancy and clut-
ter, the script ensures that only a single HAnS annotation is used per line, even if
multiple security keywords are detected. This streamlined approach prevents exces-
sive tagging while maintaining clear and structured annotations.

3https://plugins.jetbrains.com/plugin/22759-hans
4https://www.jetbrains.com/idea/

https://plugins.jetbrains.com/plugin/22759-hans
https://www.jetbrains.com/idea/

3.3 Locating and Identifying Security Features 29

By using these annotations, the validation process becomes more efficient and less
time-consuming. Instead of manually searching through extensive source code files,
the HAnS plugin in IntelliJ IDE provides immediate access to annotated security
features, allowing for quick navigation and systematic review. The structured anno-
tation format makes it easier to assess potential security feature locations, ensuring
that validation can be conducted in an organized and scalable manner. This method
not only improves the accuracy of the security feature identification process but also
significantly reduces the effort required for manual inspection and validation. An
example to a feature model can be seen in the following figure.

Figure 3.3: Security Feature Model Example

30 3 Methodology

3.3.3.3 Security Features Sources

While the categorization of security features is primarily structured based on the
security feature taxonomy, an equally important aspect of this process is identifying
the origin of these features within the software repositories. This classification is
based on labeling whether the identified security features are imported from exter-
nal security frameworks or libraries or manually developed by the software engineers
themselves. Distinguishing between these two categories provides valuable insights
into how security mechanisms are integrated into real-world software systems.

A key assumption in this study is that security features derived from frameworks
or libraries should be easier to locate compared to custom-developed ones. This
assumption arises from the fact that framework-based security features typically
use standardized API calls and follow consistent naming conventions, making them
more traceable through automated detection methods. In contrast, custom security
features, which are manually implemented by developers, may exhibit greater vari-
ability in their naming, structure, and integration, complicating their identification.
The validity of this assumption and its impact on security feature traceability will
be further discussed in the Study Results (Section 5.2).

Library-Based Security Features

To systematically identify library-based and framework-based security features, this
study incorporates an external tool developed by my colleague 5, which special-
izes in detecting security features imported from frameworks or libraries. This tool
works by analyzing security libraries and frameworks usages within the source code
and mapping them to known security-related frameworks and libraries. By lever-
aging this tool, the study aims to automate the detection process for imported
security features, ensuring a structured and scalable approach to classifying them.
Meanwhile, custom security features—those written manually by developers—will
be identified through context-based keyword matching and manual validation to
ensure accuracy. Classifying security features discovers which security features are
custom implemented by developers, and which are integrated from security frame-
works and libraries (RQ3).

5https://github.com/David0x03/security-feature-mining-study/tree/main/
SecurityFeatureMiningStudy

https://github.com/David0x03/security-feature-mining-study/tree/main/SecurityFeatureMiningStudy
https://github.com/David0x03/security-feature-mining-study/tree/main/SecurityFeatureMiningStudy

3.4 Security Features Analysis 31

3.4 Security Features Analysis

The final stage of this mining study focuses on analyzing security features beyond
their identification and categorization. This phase aims to evaluate their effective-
ness, distribution, and impact on software security. The analysis consists of two key
aspects: exploring the architectural distribution of selected security features and
their influence on system security and semantic assessment of them.

3.4.1 Exploring Security Features Distribution

Beyond assessing individual security features, it is crucial to examine how they are
distributed across the software architecture. This analysis part focuses on analyzing
the distribution patterns, scattering degrees and nesting depth of security features,
leveraging insights gathered from HAnS annotations and provided traceability data.

By exploring security feature distribution, this study can help to understand whether
security measures are centralized in specific software modules or dispersed across
multiple components. This architectural analysis is essential for assessing the effec-
tiveness of security feature placement and an approach to discover how are security
features distributed across the software architecture, and to see what patterns can
be observed in their distribution (RQ4).

3.4.2 Features Implementation Analysis

To assess the effectiveness and security robustness of identified security features, a
implementation analysis will be conducted on a selected subset of features. The
selection will be based on the criticality of the security goal they aim to fulfill,
ensuring that the most impactful and security-sensitive features are examined. This
analysis will involve a semantic evaluation of feature implementations, determining
whether they successfully fulfill their intended security purpose and whether they are
implemented following best security practices (RQ5).

4 Implementation

This chapter focuses on the implementation details of the methods and tools devel-
oped in this thesis. It explains the process of security feature identification, enhance-
ments in traceability techniques, and the integration of Static Code Analysis (SCA)
tools like SonarQube and Semgrep. Additionally, it discusses the challenges encoun-
tered during implementation and the proposed solutions to address these challenges.

4.1 Security Features Locating and Identification Process

This section describes the steps taken to locate and identify security features in the
selected software projects using different tools and techniques.

4.1.1 Using SCA Tools in Locating and Identification Process

The process began with Static Code Analyzers (SCA) to identify potential security
feature locations. These tools highlight code patterns linked to security risks, offering
a useful—but limited—starting point for further analysis.

4.1.1.1 SonarQube

The implementation process began by installing the official SonarQube Docker im-
age from Docker Hub1 and setting up the SonarQube instance locally. Then the
SonarQube for IDE plugin2 was also configured within IntelliJ IDEA, ensuring
direct integration with the SonarQube server for real-time feedback. A prerequi-
site for SonarQube analysis is that the Java source files must be successfully built
prior to scanning. This requirement applies regardless of the project’s build sys-
tem—whether Maven or Gradle—as SonarQube relies on the compiled class files to
conduct accurate static analysis.

1https://hub.docker.com/_/sonarqube
2https://plugins.jetbrains.com/plugin/7973-sonarqube-for-ide

https://hub.docker.com/_/sonarqube
https://plugins.jetbrains.com/plugin/7973-sonarqube-for-ide

34 4 Implementation

Once the setup was complete, the analysis phase commenced. The analysis param-
eters were configured to include only Java files, ensuring that irrelevant files were
excluded from the scan. This was achieved using SonarQube CLI commands, which
also required defining a unique project key and authentication token for each project
within the SonarQube instance. An example of the CLI command used for initiating
the analysis is presented in Listing 1.

1 sonar-scanner.bat ^
2 -D"sonar.projectKey=OpenRefine" ^
3 -D"sonar.sources=." ^
4 -D"sonar.java.binaries=main/target/classes" ^
5 -D"sonar.inclusions=**/*.java" ^
6 -D"sonar.host.url=http://localhost:9000" ^
7 -D"sonar.token=sqp_0f812d36e4788b8c69bab294713c314f65fdeef3"

Listing 1: Running SonarQube on a Project Example

After successfully analyzing the codebase, the findings were automatically saved
within the SonarQube instance and could be easily navigated via its web interface.
Among these findings, the Security Hotspots were of particular interest, as they
highlight areas in the code that may indicate potential security feature locations.
These hotspots could be browsed and reviewed in detail through the SonarQube
dashboard, as illustrated in the following figures.

Figure 4.1: Security Hotspots Categories

4.1 Security Features Locating and Identification Process 35

Figure 4.2: Security Hotspots Navigation

To facilitate structured data analysis, I developed a custom Python script that inter-
acts with the SonarQube API. This script retrieves the findings and organizes them
into a structured JSON format, aggregating security hotspots at the file level and
extracting relevant attributes. These attributes include the file name and path, loca-
tion lines, security category, description, severity, and recommended best practices.
This structured format ensured that the data was easily accessible for subsequent
analysis. An example of the results format is shown below.

Figure 4.3: SonarQube Findings Example

36 4 Implementation

4.1.1.2 Semgrep

The setup of Semgrep proved to be simpler and easier compared to SonarQube.
Unlike SonarQube, Semgrep did not require the software projects to be built prior
to analysis. Additionally, its Docker container could be easily executed within the
Python script, eliminating the need for setting up a dedicated analysis instance be-
forehand. This streamlined approach was more flexible.

The developed Python script was designed to be straightforward and easy to use.
It accepts the GitHub repository link as input, automatically initiates the Semgrep
Docker container, and begins the analysis process. As with SonarQube, the analysis
parameters were configured to focus exclusively on Java files, ensuring that irrele-
vant files were excluded. For performance optimization and storage efficiency, each
repository was temporarily cloned locally, analyzed, and then deleted after the re-
sults were successfully generated.

The findings were structured to capture the most relevant and informative attributes,
including the file path, exact code location line, the corresponding source code, de-
scription, severity level, security category, CWE, and reference links. This com-
prehensive structure ensured that each detected security-related element was clearly
documented and easily traceable. The results were saved in a JSON file format, pro-
viding a consistent and structured dataset for subsequent analysis and validation.
An example of the structured JSON output from the Semgrep analysis is presented
in the following figure.

Figure 4.4: Semgrep Findings Example

4.1 Security Features Locating and Identification Process 37

4.1.2 Keyword-Based Search

The Keyword-Based Search process is implemented using a Python script 3, de-
signed to semi-automate the process of detecting potential security features within
software codebases. The script initiates by receiving the repository URL as input,
after which it clones the repository locally. Unlike the temporary approach used in
the Semgrep process, these repositories are cloned permanently to support further
steps, including annotation and classification of the identified security features.

Upon cloning, the script automatically creates a local directory named after the
project name, which is extracted directly from the provided repository URL. This
directory serves as the storage space for the cloned repository, ensuring that it is
readily available for subsequent analysis stages.

The entire process of cloning and setting up the local directory structure is encap-
sulated within the clone_repository function, as shown in the following listing:

1 import os
2 import subprocess
3

4 def clone_repository(repo_link):
5 """Clone the repository into a 'repos' directory with the project name."""
6 # Extract project name from the repo URL
7 project_name = os.path.basename(repo_link).replace(".git", "")
8 repos_dir = os.path.join(os.getcwd(), "repos")
9 project_dir = os.path.join(repos_dir, project_name)

10

11 # Create the 'repos' directory if it doesn't exist
12 os.makedirs(repos_dir, exist_ok=True)
13 if os.path.exists(project_dir):
14 print(f"Repository '{project_name}' already exists in 'repos'.")
15 else:
16 try:
17 subprocess.run(["git", "clone", repo_link, project_dir], check=True)
18 print(f"Cloned '{project_name}' into 'repos'.")
19 except subprocess.CalledProcessError as e:
20 raise RuntimeError(f"Failed to clone repository: {e}")
21 return project_dir, project_name

Listing 2: clone_repository Function

3https://github.com/David0x03/security-feature-mining-study/tree/main/
SecurityKeywordsBasedSearchTool

https://github.com/David0x03/security-feature-mining-study/tree/main/SecurityKeywordsBasedSearchTool
https://github.com/David0x03/security-feature-mining-study/tree/main/SecurityKeywordsBasedSearchTool

38 4 Implementation

4.1.2.1 Input Filtering

The input filtering process is a critical step in ensuring that the keyword-based
search yields accurate and relevant results, minimizing false positives and enhancing
the quality of the identified security features. The filtering process was designed for
four primary components, each addressing specific challenges encountered during
the initial implementation phase.

The first filtering component was comments within the source code. Comments
frequently contain keywords that overlap with security-related terms, which could
result in false-positive matches. Since comments do not represent executable code
or actual security implementations, including them would significantly reduce the
precision of the identification process. This decision was taken by preliminary exper-
iments conducted on three different projects, where it became evident that comments
were a major source of irrelevant matches. Excluding comments, therefore, ensured
that the analysis remained focused solely on actual code implementations, enhanc-
ing the overall accuracy and reliability of the results.

The second filtering component was test-related code, as it does not represent
functional security features within the scope of this study. The goal of the anal-
ysis is to focus on real, operational security features, not their corresponding test
functions. Moreover, security-related tests were not categorized within the adopted
security features taxonomy [6], further justifying their exclusion. This filtering ap-
proach ensures that the identified features are functional components contributing
to the system’s security, rather than auxiliary test cases.

The third filtering component addressed previously annotated code lines. If
the keyword-based script is executed multiple times on the same codebase to anno-
tate newly added keywords or if the script is executed on a preivously annotated
codebase, the already annotated features could be redundantly processed, leading
to duplicate annotations. Additionally, once the findings from features imported
from security frameworks and libraries were annotated (more in subsection 4.2.1),
it is essential to avoid re-annotating them during subsequent scans. This filtering
approach also accommodates scenarios where a user may wish to identify only new,
previously undetected security features within the codebase. By excluding already
annotated lines, the script ensures that only unique and valuable insights are gen-
erated during each iteration.

The fourth filtering component involved the exclusion of import statements.
While imports may indicate the usage of security libraries and frameworks, they do
not necessarily confirm the implementation of security features within the codebase.

4.1 Security Features Locating and Identification Process 39

An imported security library might not be actively used, or its imported components
may not represent security features directly relevant to the study. Therefore, exclud-
ing import statements prevents the generation of misleading or irrelevant matches,
focusing the analysis on actual security feature implementations within the code.

Finally, a fundamental filter was applied to restrict the search process to Java files
only, excluding all other file types. Since Java is the primary programming language
targeted in this study, this ensures the search remains focused and consistent with
the study’s objectives.

4.1.2.2 Security Keywords and Rules

The Security Keywords were defined and structured within a JSON file, serving
as the primary database for the Keyword-Based Search process. The structure of
this file was directly aligned with the taxonomy of functional security features by
Hermann et al. [6], using its main categories and subcategories as the foundational
mapping. Under each subcategory, a set of security-related keywords was defined
to facilitate accurate feature identification (as previously illustrated in Figure 3.2).
This structured approach ensured that the keyword search process was systematic,
organized, and aligned with the broader security feature classification framework.

The keyword sets were designed to be iteratively refined and continuously updated
throughout the searching process. With each iteration of the search, new insights
were gained, leading to adjustments in the keyword lists. Notably, new keywords
were frequently added during the manual validation of the identified possible secu-
rity feature locations. During this process, it was observed that many other security
features were implemented within dedicated security-related classes or files, which
contained patterns or terms not initially included in the keyword list. When such
keywords were identified, they were immediately added to the corresponding subcat-
egory in the JSON file, ensuring that future iterations could detect similar security
features in other codebases.

In addition to adding new keywords, existing keywords were continuously refined to
enhance detection precision. Some keywords required adjustments to better align
with the coding patterns observed during validation, ensuring that the script could
more accurately capture true security feature implementations and reduce the oc-
currence of false positives. Conversely, keywords that consistently led to irrelevant
matches or exhibited a high false-positive rate were eliminated from the database.
This process of iterative refinement ensured that the keyword-based search remained
relevant, precise, and adaptive to the complexities of real-world codebases.

40 4 Implementation

After the Keyword-Based Search script was executed, it provided initial output in-
sights to guide the subsequent validation process. This included the total number
of potential security feature locations, the number of files where keyword matches
were found, how many features have been successfully identified by the automated
tool (Subsection. 3.3.3.3), and an overview of the top 10 keyword matches. Each of
these matches was presented alongside the category and subcategory under which it
falls, offering the user an early indication of the types of security features likely to be
encountered in the codebase. This preliminary insight allowed for better preparation
and focus during manual validation, ensuring a more efficient review process. An ex-
ample of this initial output insight is presented in Figure 4.5.

Figure 4.5: Initial Output Insights Example

4.1.2.3 Embedded Feature Annotations

The Keyword-Based Search script was designed to automatically generate Embedded
Feature Annotations in a format that can be directly used by HAnS at the identi-
fied possible security feature locations. This approach aimed to facilitate seamless
navigation and efficient validation of potential security features within the codebase.
By leveraging the HAnS annotation structure, the validation process became more
structured, allowing for quick identification and manual inspection of flagged code
segments.

Upon executing the script, a file named .feature-model was automatically created

4.2 Security Features Classification and Labeling 41

within the project’s root directory. This file served as the central annotation refer-
ence, where all potential security feature locations were documented. Each identified
location was assigned a generic naming convention, using the format PosX, where
X represents a sequential identifier. This naming ensured a simple yet organized
approach to managing and reviewing potential feature locations.

Once annotated, these positions could be easily accessed and navigated using the
HAnS plugin within IntelliJ IDEA, enabling the validator to quickly move through
the flagged locations for manual assessment. This process significantly streamlined
the validation phase, reducing the time and effort required to manually locate and
review potential security features. An example of the generated .feature-model file
and how the annotated positions facilitate navigation and validation is illustrated
in Figure 4.6.

Figure 4.6: ".feature-model" File Example

4.2 Security Features Classification and Labeling

Once the .feature-model file is generated with the initial listing of possible secu-
rity feature locations, the validation and classification process begins. The primary
objective of this phase is to map and label the identified security features based on
their source and functional classification, ensuring a structured and comprehensive
overview of the features within each project.

42 4 Implementation

To facilitate this, the .feature-model file is organized into three main categories:

Security_Features_Custom: This category includes security features that are
manually developed by the software developers within the project. These features
represent custom implementations that address specific security needs.

Security_Features_Library: This category covers security features that are im-
ported from external security libraries or frameworks. These features leverage pre-
defined security functionalities provided by established frameworks, ensuring stan-
dardized and reliable security implementations.

Security_Features_Library_Tool: This category will be explained in detail in
the next subsection, as it pertains to specific tool-assisted detections.

Figure 4.7: Security Features Classification and Labeling Example

Under each of these three divisions, the standard security feature taxonomy is ap-

4.2 Security Features Classification and Labeling 43

plied, organizing features according to their respective categories and subcategories.
This hierarchical structure ensures consistency and traceability throughout the clas-
sification process. A real-world example illustrating the structure and organization of
the first two divisions, Security_Features_Custom and Security_Features_Library,
is presented in Figure 4.7.

During manual validation, each identified feature possible location is carefully re-
viewed and classified under the appropriate category and subcategory. This step en-
sures that each feature is accurately mapped according to its functional purpose and
source. After completing the validation, any categories or subcategories where no
security features were identified are removed from the final mapping to enhance clar-
ity and readability. This results in a concise and focused overview, emphasizing only
the relevant security features present in the codebase.

4.2.1 Features Imported from Security Frameworks and Libraries

This section explains the third and final division of the .feature-model file, namely
Security_Features_Library_Tool. This division specifically encompasses secu-
rity features identified using an external tool developed by my colleague4. The
primary purpose of this tool is to automatically detect security features that are im-
ported from a predefined set of security libraries and frameworks, as listed in Table
4.1.

Table 4.1: List of Security Frameworks and Libraries Covered by the Tool
Framework/Library Reference
Apache Shiro shiro.apache.org/
Bcrypt github.com/patrickfav/bcrypt
Bouncy Castle bouncycastle.org/
Google Tink developers.google.com/tink
Java SE oracle.com/java/technologies/javase/
OWASP ESAPI owasp.org/www-project-enterprise-security-api/
Pac4j pac4j.org/
Spring Security spring.io/projects/spring-security

The tool operates by scanning the codebase and identifying API calls and import
statements linked to the specified libraries and then tracing functions and meth-
ods used from these libraries and frameworks. However, it is important to note
that the tool’s role is limited to locating the positions of these features within the

4https://github.com/David0x03/security-feature-mining-study/tree/main/
SecurityFeatureMiningStudy

shiro.apache.org/
github.com/patrickfav/bcrypt
bouncycastle.org/
developers.google.com/tink
oracle.com/java/technologies/javase/
owasp.org/www-project-enterprise-security-api/
pac4j.org/
spring.io/projects/spring-security
https://github.com/David0x03/security-feature-mining-study/tree/main/SecurityFeatureMiningStudy
https://github.com/David0x03/security-feature-mining-study/tree/main/SecurityFeatureMiningStudy

44 4 Implementation

code. It does so by executing a CLI command, which is provided in Listing 3.
The tool then outputs its findings in a structured JSON format without directly
annotating the code. An example of the generated results is presented in Figure
4.8.

1 locate PROJECT_DIR --mappings MAPPINGS_DIR

Listing 3: Locating Features Command

Figure 4.8: Results from Located Features Example

Given that the tool does not perform automatic annotation, it became necessary
to integrate its output into the main keyword-based search script. This integration
ensured that the identified security features were automatically annotated using the
HAnS format within the .feature-model file before initiating the manual validation
process. This approach significantly reduced manual effort, as it prevented redun-
dant work by excluding features that had already been accurately detected and
annotated by the tool.

Furthermore, it is important to highlight that security features imported from frame-
works or libraries not listed in Table 4.1 would still be identified through the standard
Keyword-Based Search process. Once identified, these features would be classified
under the Security_Features_Library division within the .feature-model file,
ensuring comprehensive coverage of all security features, regardless of the source of
their library or framework. Additionally, these newly identified libraries and frame-
works would be added to the list of frameworks recognized by the tool, enabling
them to be automatically detected in future analyses and thereby simplifying the
identification process in subsequent projects.

5 Study Results

This chapter presents the findings of the study, including the evaluation of the dis-
tribution of security features, the automated features locating tool, and security
features metrics that assess their role in the broader software system landscape.
Insights on modular design, traceability, and a detailed evaluation of the research
questions are also provided to summarize the outcomes of the study.

5.1 Security Features Locating and Identification Process
Evaluation (RQ1)

5.1.1 SCA Tools Results

The results generated by SonarQube and Semgrep during the security feature locat-
ing and identification process were, overall, limited in effectiveness. The input set
for this evaluation consisted of six repositories, including two Apache projects, two
Eclipse projects, and two additional standalone projects. These repositories were
selected to represent diverse and widely used Java-based software systems.

The contrast in outcomes between the two tools was significant. SonarQube pro-
duced a total of 1,584 Security Hotspots, representing potential security feature
locations across the six repositories. In stark comparison, Semgrep yielded only 16
possible locations in total. Notably, Semgrep failed to detect any results in two of
the six repositories, highlighting inconsistencies in its detection capabilities across
different project structures and codebases.

Following manual validation and annotation, the average false positive rate for
SonarQube was determined to be 90.74%, while that of Semgrep was 12.50%. Al-
though Semgrep’s false positive rate appears relatively low, this result is less mean-
ingful given the extremely small number of locations identified by Semgrep—an
average of only three findings per project. The limited number of initial detections
significantly reduces its value in a broader feature identification context.

46 5 Study Results

A detailed comparison of findings and false positive rates for both tools across the
six repositories is presented in Table 5.1.

Table 5.1: Findings of Security Feature Detection Using SonarQube and Semgrep

Project
SonarQube

(SF/L)
Semgrep
(SF/L)

SonarQube
FP Rate

Semgrep
FP Rate

Lines of Code
(Java)

Apache Accumulo 10/301 3/3 96.68% 0.00% 424K

Apache ActiveMQ 8/584 4/4 98.63% 0.00% 484K

Eclipse Milo 6/30 1/1 80.00% 0.00% 171K

Eclipse Tradista 3/505 0/0 99.41% N/A 100K

Teammates 5/23 4/8 78.26% 50.00% 133K

OpenRefine 9/105 0/0 91.43% N/A 102K

Note: SF/L = Security Features Confirmed / Potential Locations

SCA Tools Limitation

The most significant limitation observed in the use of SCA tools, such as SonarQube
and Semgrep, lies in their inherent main task toward problem detection. These tools
are primarily designed to identify security-related issues or weaknesses, which means
their detection mechanisms are triggered only when there is something misconfig-
ured, vulnerable, or suspicious in the code. As a result, any well-implemented and
correctly integrated security feature is likely to go unnoticed, since it does not raise
any red flags within the predefined rule sets of these tools.

Moreover, an important distinction became clear during the evaluation: many of
the findings highlighted by the tools were not actual security features, but rather
general-purpose functionalities that introduced potential security risks. Two promi-
nent examples observed across the projects include the detection of hardcoded IP
addresses, which were flagged as security-sensitive, and the presence of enabled
debug functionalities, which were interpreted as risky from a security standpoint.
While these findings are valid in the context of code quality or secure coding prac-
tices, they do not represent security features by design or intent.

As a result of analyzing the output and attempting to use it to support the Locating
and Identifying Security Features process, it became evident that SCA tools did not
provide the level of support expected. Their inability to detect secure, functional
security features—which are often essential for enforcing authentication, access con-
trol, data protection, and similar goals—renders them ineffective as standalone tools

5.1 Security Features Locating and Identification Process Evaluation (RQ1) 47

for the purpose of this study. This blind spot fundamentally limits their utility in
locating security features in software systems code bases.

5.1.2 Input Set Projects

The input set for this analysis included six repositories, each selected based on their
primary functional purpose and relevance to security-sensitive operations, as listed
in Table 5.2. These systems represent real-world applications that handle protected
or critical data, making them strong candidates for identifying a wide spectrum of
security features.

OpenRefine is a data-cleaning and transformation tool commonly used in data
science workflows, often processing large datasets that may include sensitive in-
formation. Traccar is a GPS tracking platform used in transportation and fleet
management, involving real-time location data. LibrePlan is an enterprise-grade
project management system that typically handles organizational and personnel
data. OpenMRS is an open-source platform used in clinical environments, man-
aging electronic medical records and health-related information. Broadleaf Com-
merce is a retail-oriented e-commerce framework, processing personal and payment
data. Lastly, Java NATS is a lightweight messaging system used in distributed
cloud infrastructure, where message confidentiality and system integrity are essen-
tial.

Table 5.2: Application Domains of the Selected Projects

Project Field of Use
Lines of Code

(Java)
OpenRefine Data Processing / Data Science 102K
Traccar Transportation / GPS Tracking 87K
LibrePlan Project Management / Enterprise 182K
OpenMRS Health / Medical Sector 140K
Broadleaf Commerce E-commerce / Retail Sector 207K
Java NATS Cloud Infrastructure / Messaging Systems 63K

5.1.3 Keyword-Based Search Results

In contrast to the limitations encountered with SCA tools, the Keyword-Based
Search approach yielded notably better results in terms of locating and identify-
ing security features across all six analyzed repositories. The process proved to be
more targeted and effective, as it focused directly on the presence of security-related
constructs based on a continuously evolving list of keywords derived from SecLists1

1https://github.com/danielmiessler/SecLists

https://github.com/OpenRefine/OpenRefine
https://github.com/traccar/traccar
https://github.com/LibrePlan/libreplan
https://github.com/openmrs/openmrs-core
https://github.com/BroadleafCommerce/BroadleafCommerce
https://github.com/BroadleafCommerce/BroadleafCommerce
https://github.com/nats-io/nats.java
https://github.com/danielmiessler/SecLists

48 5 Study Results

and corresponding to the security features taxonomy in [6].

On average, the keyword-based method enabled the identification of 111 security
features per project, reflecting both the precision and scalability of the approach.
The iterative nature of the identification process played a crucial role in these re-
sults. As new projects were analyzed, the security keyword list was refined and
expanded, incorporating patterns and terms from newly discovered features. This
continuous feedback loop enriched the detection process and allowed for increased
feature coverage in subsequent projects and also minimized needed time and effort
for the results validation process. A detailed breakdown of the findings per project is
presented in Table 5.3, illustrating the effectiveness and adaptability of the keyword-
based strategy in mining and mapping security features within large-scale software
systems.

Table 5.3: Keyword-Based Search Results per Project
Project Potential Locations Identified Features
OpenRefine 171 44
Traccar 255 107
LibrePlan 22 35
OpenMRS 257 143
Broadleaf Commerce 289 218
Java NATS 153 119

RQ1:How can security features be identified and located within the
code of software systems? In response to the first research question, this the-
sis adopted an iterative and tool-supported methodology to tackle the challenge
of identifying and locating security features in large software systems. Given
the widely recognized complexity of this task—due to factors such as feature
scattering, lack of standardized documentation, and high false-positive rates in
automated tools—the study tested and refined multiple techniques including
static analyzers, keyword-based search, and embedded annotations. Through
continuous experimentation and adaptation, the methodology achieved compre-
hensive and precise feature identification. As demonstrated in the results in
Section 5.1.1 and Section 5.1.3, this iterative approach was effective in overcom-
ing traditional limitations and enabled systematic exploration and annotation of
security features at scale.

5.2 Categorizing Security Features (RQ2)

After the validation phase confirmed the existence of security features at many of the
locations identified by the Keyword-Based Search, each feature was then annotated

5.2 Categorizing Security Features (RQ2) 49

using the HAnS annotation format. This annotation process went beyond simply
assigning a descriptive name to the feature; it also involved assigning resource-based
labels to indicate whether the feature was custom-developed by the project’s devel-
opers or imported from an external security framework or library. This dual labeling
was essential to support both the taxonomy-based classification and the source-based
analysis of security features. Once labeled, the validated features were systematically
categorized into their appropriate category and subcategory based on the adopted
security feature taxonomy, and recorded in the .feature-model file. This structure
provided a clear and traceable representation of security feature distribution across
projects.

As shown in Table 5.1 and Table 5.4, the number of security features implemented
via external libraries versus those custom-developed is presented in detail both col-
lectively on project level and on category and subcategory level. In addition, a
breakdown of the functional categories of identified features reveals that Access
Control accounts for nearly half of all detected security features. This highlights
its fundamental role and wide applicability in securing software systems. Addi-
tionally, approximately 25% of the identified features fell under the category of
Cryptography, indicating a positive trend in the adoption of cryptographic mech-
anisms in practice. However, their presence alone does not guarantee correct or
secure implementation, an issue that will be examined further in Section 5.7. The
full statistics of feature types and their categorical distribution are presented in
Table 5.4.

Figure 5.1: Comparison of Library vs Custom Features Identified per Project

Open
Refi

ne

Tra
cc

ar

Libre
Plan

Open
M

RS

Bro
ad

lea
f Com

mer
ce

Jav
a NATS

0

50

100

150

18
34

9
23

85

61

26

73

26

120
133

58

N
um

be
r

of
Se

cu
rit

y
Fe

at
ur

es

Library Features
Custom Features

50 5 Study Results

RQ2:What security features exist in a software system? In response to
the second research question, the study employed the security features taxonomy
by Hermann et al. [6] as a foundation for structured feature categorization. Se-
curity keywords were mapped to defined categories and subcategories, ensuring
that each identified feature could be systematically classified. The taxonomy en-
abled uniformity in annotation and allowed for consistent analysis across diverse
projects. Moreover, the iterative improvement of the keyword database—driven
by manual validation feedback—further enhanced the completeness and accuracy
of the categorization effort (see Section 2.6 and Section 3.3.3.1).

Table 5.4: Categorizing of Identified Features under the Taxonomy across Projects

Category Subcategory
OpenRefine

L | C | T
Traccar
L | C | T

LibrePlan
L | C | T

OpenMRS
L | C | T

Broadleaf
Commerce

L | C | T

Java
NATS

L | C | T Total
CL

Security Features

Access Control
Authentication 1 19 20 3 20 23 3 16 19 2 32 34 29 61 90 0 6 6 38 154 192 28
Authorization 0 0 0 0 26 26 1 5 6 0 37 37 11 36 47 0 4 4 12 108 120 11

Cryptography

Encryption 3 3 6 1 1 2 0 0 0 3 4 7 2 2 4 3 3 6 12 13 25 13
Key Management 0 0 0 13 2 15 0 0 0 2 2 4 1 0 1 6 13 19 22 17 39 17
Signature 0 0 0 6 4 10 0 0 0 0 0 0 0 0 0 5 2 7 11 6 17 6
Hashing 1 1 2 0 8 8 3 0 3 3 3 6 4 1 5 6 4 10 17 17 34 17
Steganography 1 0 1 0 0 0 0 0 0 5 5 10 2 2 4 9 18 27 17 25 42 25

Security Monitoring
Logging 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 0 3 0 3 0
Automated Response 0 0 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 5 5 3
History Maintenance 0

Secure Data Handling

Data Validation 0 1 1 0 0 0 2 0 2 0 18 18 6 3 9 0 0 0 8 22 30 3
Data Sanitization 8 2 10 0 0 0 0 0 0 2 1 3 6 1 7 0 0 0 16 4 20 4
Retention Control 0
Secure Storage 0
Trusted Sources 2 0 2 2 0 2 1 2 3 2 3 5 2 2 4 3 1 4 12 8 20 8

System State Protection

Resource Management 1 0 1 0 0 0 0 0 0 0 0 0 5 1 6 0 0 0 6 1 7 0
System State Validation 0 0 0 4 5 9 0 0 0 0 0 0 0 18 18 0 0 0 4 23 27 1
Session Management 0 0 0 4 0 4 0 2 2 1 10 11 12 0 12 0 0 0 17 12 29 12
State Synchronization 0 0 0 0 0 0 1 0 1 3 0 3 2 5 7 28 0 28 34 5 39 5
Miscellaneous 1 0 1 5 3 8 0 0 0 0 0 0 0 0 0 2 6 8 6 11 17 11

Note: L | C | T = Library Security Features | Custom Security Features | Total
CL Security Features = Custom Security Features based on Library Features in

Implementation

In this study, the term "Custom Security Features" would intuitively refer to
security features developed from scratch by the developers, without relying on pre-
defined APIs from external libraries or frameworks. However, it is important to
note that a subset of these features—though labeled as custom—are architecturally
built on top of external library functionalities. These wrapper features encapsu-
late or extend existing library-based operations while offering customized logic or
domain-specific behavior. The number of such features is listed in the final col-
umn of Table 5.4 under “CL Security Features.” A closer inspection reveals that
cryptographic categories, particularly Encryption and Key Management, contain a
high number of these library-based custom wrappers, suggesting that developers of-
ten rely on well-established primitives while customizing the integration. Similarly,

5.3 Security Library API Detection Tool Results (RQ3) 51

many Authentication features follow the same pattern, where the developer wraps
authentication mechanisms provided by frameworks such as Spring Security. This
hybrid construction emphasizes both reliance on established security tooling and the
need for customization to meet application-specific requirements (see Section 5.5.1
for further analysis of this pattern).

5.3 Security Library API Detection Tool Results (RQ3)

One of the most significant advantages of using the Automated Features Locating
Tool was the elimination of the need for manual validation of the results. Since the
tool relies on matching known API calls from established security frameworks and
libraries, all identified locations could be considered reliable by design. The only
required follow-up was to classify each identified feature under the appropriate cat-
egory and subcategory of the security feature taxonomy, thereby streamlining the
overall annotation and classification process.

Figure 5.2: Comparison of Feature Detection Sources per Project

Open
Refi

ne

Tra
cc

ar

Libre
Plan

Open
M

RS

Bro
ad

lea
f Com

mer
ce

Jav
a NATS

0

50

100

150

0
10

1 0

36

15
1 7 2 5

20
11

43

90

32

138

162

93

N
um

be
r

of
Se

cu
rit

y
Fe

at
ur

es

Automated Tool Only
Overlap

Keyword-Based Search Only

52 5 Study Results

An interesting observation was the overlap between this tool and the keyword-based
search approach. On average, 8 security features per project were commonly identi-
fied by both methods, confirming consistency in those specific detections. However,
the automated tool uniquely identified an average of 10 security features per project
that were not captured by the keyword-based approach. These exclusive findings
demonstrate the complementary role that the automated tool can play in expanding
feature coverage. The full breakdown of results per project is presented in Figure
5.2.

5.4 Security Library API Detection Tool Evaluation

While the tool performed well in locating relevant security-related components, it is
important to note that many of the detected elements were low-level features iden-
tified by the automated tool. These typically represent small helper components or
individual operations imported from external security libraries and frameworks. In
contrast, higher-level features such as sign in example in figure 5.3, which encap-
sulate a complete security functionality, were identified semi-automatically through
the keyword-based search. This distinction illustrates the different granularity levels
considered by each tool: the automated tool excels at uncovering fine-grained,
reusable building blocks, while the keyword-based search is better suited for cap-
turing broader, semantically complete security features. As such, the tools comple-
ment each other effectively, ensuring a more comprehensive identification of security
features. An example of this granularity difference is illustrated in Figure 5.3.

From a usability perspective, the tool was straightforward and efficient to operate.
However, one limitation was its inability to directly annotate the identified features
within the codebase. Instead, results were provided in JSON format, requiring ad-
ditional integration into the main script for automatic annotation using the HAnS
format.

Despite this limitation, the tool demonstrated strong scalability and extensibility.
During the study, several security-related libraries and frameworks not originally
included in the tool’s detection scope were discovered through the keyword-based
search. These were then manually added to the tool’s internal search database,
enhancing its capabilities for future iterations or new projects. The list of additional
libraries and frameworks identified during this process is presented in Table 5.5, while
those already covered by the tool are listed in Table 4.1. This adaptability makes
the tool particularly useful for ongoing or large-scale mining studies, where updating
and expanding coverage is crucial to maintaining relevance and accuracy. And also
to give a glimpse about the number of security features that were identified from
these frameworks and libraries, we can see these numbers per project in Table 5.6.

5.4 Security Library API Detection Tool Evaluation 53

These numbers show how including more frameworks and libraries to this tool can
increase the number of automatically identified features rapidly and in an efficient
way. After personally using this tool, I would argue that it would be so much better
and beneficial, if it can could annotate the identified features instantly, and if also
adding a newly discovered library or a framework that include security features could
be possible with just typing the name or the link of it.

Figure 5.3: High Level and Low Level Features Example

Table 5.5: List of Frameworks and Libraries Discovered by the Keyword-Based
Search

Framework/Library Used Feature Categories Reference

Apache Lucene Data Sanitization https://lucene.apache.org/

Apache Commons

Steganography
Data Sanitization
Trusted Sources https://commons.apache.org/

Java.Net Steganography https://docs.oracle.com/javase/8/docs/api/java/net/package-summary.html

Java.Util

Hashing
Steganography
State Synchronization https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html

Jakarta Servlet Session Management https://jakarta.ee/specifications/servlet/6.1/

Jakarta RESTful Web Services Miscellaneous https://jakarta.ee/specifications/restful-ws/3.0/apidocs/

OWASP AntiSamy Data Validation https://github.com/nahsra/antisamy

GoogleAuth Authentication https://github.com/wstrange/GoogleAuth

Jasypt
Authentication
Encryption http://www.jasypt.org/

javax.mail Authentication https://javaee.github.io/javamail/

javax.crypto
Encryption
Key Management https://docs.oracle.com/javase/8/docs/api/javax/crypto/package-summary.html

javax.servlet.http Authentication https://docs.oracle.com/javaee/7/api/javax/servlet/http/package-summary.html

javax.net.ssl Miscellaneous https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/package-summary.html

javax.validation Data Validation https://docs.oracle.com/javaee/7/api/javax/validation/package-summary.html

Table 5.6: Security Features identified from Frameworks and Libraries in Table 5.5
Project Identified Security Features per Project

OpenRefine 15
Traccar 15
LibrePlan 9
OpenMRS 18
Broadleaf Commerce 26
Java NATS 38

https://lucene.apache.org/
https://commons.apache.org/
https://docs.oracle.com/javase/8/docs/api/java/net/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html
https://jakarta.ee/specifications/servlet/6.1/
https://jakarta.ee/specifications/restful-ws/3.0/apidocs/
https://github.com/nahsra/antisamy
https://github.com/wstrange/GoogleAuth
http://www.jasypt.org/
https://javaee.github.io/javamail/
https://docs.oracle.com/javase/8/docs/api/javax/crypto/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/validation/package-summary.html

54 5 Study Results

RQ3:What security features are custom implemented by developers,
and What are integrated from security frameworks and libraries? The
third research question was explored by introducing a resource-based classifica-
tion of features, distinguishing between custom-developed and library-imported
implementations. A combination of automated tools and keyword-based meth-
ods was used to perform this classification, followed by automatic annotation
using the HAnS fomat. As discussed in Section 4.2, many of the features were
found to wrap or extend imported functionalities, particularly in cryptographic
and authentication domains. Table 5.1 summarizes the split between feature
sources, and the results challenge assumptions in prior work by showing that
custom-developed features still play a significant role despite the availability of
reusable security libraries[35].

5.5 Security Features Distribution Evaluation (RQ4)

To better understand how security features are structurally integrated within soft-
ware systems, this study evaluates their distribution characteristics using three key
metrics: Scattering Degree, Tangling Degree, and Nesting Depth. These metrics
were computed for each identified feature across all analyzed projects, and the av-
erage values per project are reported in Table 5.7.

The Scattering Degree measures the number of distinct files in which a security
feature is implemented or used. Higher values indicate that a feature is more dis-
persed across the system, potentially increasing maintenance complexity and reduc-
ing traceability. For example, Session Management shows notably high scattering
degrees (averaging 8.06), especially in LibrePlan and Broadleaf Commerce, sug-
gesting widespread usage across multiple files.

Tangling Degree represents how interwoven a security feature is with other func-
tionalities within the same file. A higher tangling degree indicates greater complexity
and potential difficulty in isolating and maintaining security logic. Notably, features
such as Key Management (2.67) and Signature (2.98) under Cryptography exhibit
higher tangling degrees, indicating their close integration with other functionalities.

Nesting Depth refers to the average structural nesting level, such as within control
statements, method calls, or class hierarchies, indicating integration complexity. A
higher nesting depth can reduce readability and maintainability. Features such as
Steganography (1.85) and Data Sanitization (3.18) display higher average nesting
depths, reflecting potentially deeper structural integration within the system.

5.5 Security Features Distribution Evaluation (RQ4) 55

Table 5.7: Security Features Distribution Aspects per Subcategory / Project

Category Subcategory
OpenRefine

S | T | N
Traccar
S | T | N

LibrePlan
S | T | N

OpenMRS
S | T | N

Broadleaf
Commerce

S | T | N

Java
NATS

S | T | N Avg. Total

Access Control
Authentication 1 1.35 1.6 1.43 0.67 1.21 1.17 1.44 1.5 1.65 0.69 1.33 2.5 1.15 1.34 1 0 1 1.29 0.93 1.33
Authorization 0 0 0 2.38 0.33 1.05 1 0.43 1.14 2.33 0.4 1.06 2 0.6 1.26 1 0 1 1.74 0.35 1.14

Cryptography

Encryption 1 2.67 2.17 1 1.5 1.5 0 0 0 1.14 1 1.43 2 0 1 2 1 1 1.33 1.44 1.52
Key Management 0 0 0 1.07 5 3.27 0 0 0 1.33 1 1.67 1 0 1 1 2 3 1.10 2.67 2.32
Signature 0 0 0 1.1 2.6 2.9 0 0 0 0 0 0 0 0 0 3 4.33 1.38 1.37 2.98 2.29
Hashing 1.5 1 1.5 1.5 3.25 2 1 0 1 4.5 1 1.52 3.5 1 1.6 2.75 2 1.75 2.46 1.20 1.47
Steganography 1 2 3 0 0 0 0 0 0 1.33 1.11 1.5 2.5 0.5 1.08 1.83 1.33 1.82 1.53 1.39 1.85

Security Monitoring
Logging 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
Automated Response 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1
History Maintenance 0

Secure Data Handling

Data Validation 1 0 1 0 0 0 2 0 1 4.27 0.13 1 6 3 9 0 0 0 2.65 0.63 2.60
Data Sanitization 1.2 0 1.1 0 0 0 0 0 0 1.67 1 1.44 6 1 7 0 0 0 2.72 0.67 3.18
Retention Control 0
Secure Storage 0
Trusted Sources 1 1 2 1.5 3.5 3.25 1 2 2.67 1.25 1 1.5 2 1 1.33 2.5 1.5 1.25 1.54 1.67 1.83

System State Protection

Resource Management 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
System State Validation 0 0 0 7.38 0.25 1.03 0 0 0 0 0 0 2 1 1 0 0 0 4.69 0.63 1.02
Session Management 0 0 0 1.75 0.5 1.12 22 0.5 1.02 4.22 0.44 1.02 8.33 2.33 1.57 0 0 0 8.06 0.96 1.18
State Synchronization 0 0 0 0 0 0 1 0 1 2.33 0 1 1.5 0.5 1.5 1.33 0 1 1.61 0.25 1.13
Miscellaneous 1 0 1 1.25 1.88 1.5 0 0 0 0 0 0 0 0 0 2 1 1.25 1.42 0.96 1.08

Note: S | T | N = Scattering Degree | Tangling Degree | Avg. Nesting Depth

RQ4:How are security features distributed across the software archi-
tecture, and what patterns can be observed in their distribution? To
address the fourth research question, this thesis conducted an architectural-level
analysis based on two distribution metrics: Scattering Degree and Nesting Depth.
These metrics were computed for each feature across the six analyzed reposito-
ries using data from HAnS annotations. As presented in Table 5.3, the findings
confirmed that security features are often scattered and structurally embedded,
reinforcing earlier and recent claims in literature about the cross-cutting and
decentralized nature of security logic [6, 35]. These distribution characteristics
complicate traceability and justify the need for structured annotations and ar-
chitectural awareness during development and maintenance.

5.5.1 Insights on Modular Design

During the manual validation and classification of security features, two key obser-
vations emerged regarding the modularity and structural organization of security-
relevant code within the analyzed projects.

The first and most recurring pattern involved the relationship between custom se-
curity features and security libraries. In numerous instances, the core logic of a
custom-developed security feature was found to wrap around or extend a standard

56 5 Study Results

functionality provided by an external library or framework. This shows how de-
velopers often rely on well-established libraries to fulfill the cryptographic or au-
thentication logic, while building an application-specific security interface or feature
layer on top of it. This modular reuse of security primitives aligns with previous
research observations, such as those by Acar et al. [21], which argue that developers
often integrate third-party security APIs without fully understanding or encapsu-
lating their implications, potentially risking misuse when abstraction is handled
incorrectly. A representative example of this wrapping pattern is shown in Figure
5.4, where cryptographic API calls are encapsulated within application-level feature
implementations.

Figure 5.4: Observed Pattern Example

Table 5.8: Observed Pattern Occurrences per Project
Project #Occurrences per Project

OpenRefine 5
Traccar 25
LibrePlan 3
OpenMRS 16
Broadleaf Commerce 28
Java NATS 29

The second observation concerns the organizational structure of security features
within the project codebases. In most repositories analyzed, security-related func-
tionality was scattered across multiple unrelated locations, confirming the natural
dispersion and low cohesion of security features noted in prior studies. However, a
notable exception was observed in the Broadleaf Commerce project, where a clear
modular structure was adopted. This project included a dedicated security sub-
directory in various parts of the codebase, and most security features identified in
the study were implemented in files contained within those directories. This struc-
tured modularity not only enhances security traceability but also reflects principles

5.6 Insights on Context of Use 57

of security-by-design, promoting improved maintainability and auditability of sen-
sitive features. An example of this directory structure is presented in Figure 5.5.
These insights emphasize the importance of architectural decisions and modular
design patterns in enhancing the visibility, traceability, and reliability of security
features in large-scale software systems.

Figure 5.5: Security Modular Structure Example

5.6 Insights on Context of Use

During the semantic validation and classification of security features, it was observed
that different categories of features tend to appear in distinct usage contexts within
the software systems. Most notably, Authentication features were predominantly
utilized in login-related contexts, serving as entry points for user verification across
the analyzed projects. In contrast, Cryptographic features exhibited a wider contex-
tual distribution, supporting use cases such as message encryption, signature veri-
fication, and secure exchange of cryptographic parameters. This diverse utilization
highlights the foundational role cryptography plays in securing various components
of a system. Furthermore, Session Management features were primarily employed in
web-related functionalities, governing user session behavior, particularly in scenarios
involving session creation, expiration, or validation.

5.7 Comparison with Best Practices and Standards (RQ5)

To assess the quality and security robustness of identified features, a comparative
evaluation was conducted between implemented security features and established

58 5 Study Results

best practices and OWASP standards. In this section, we show an analysis exam-
ple of the loginCustomer method, a method identified in the Broadleaf Commerce
project, which represents a core authentication feature within the system. The eval-
uation was carried out with reference to the OWASP Top 10 (2021), focusing primar-
ily on A07: Identification and Authentication Failures, A05: Security
Misconfiguration, and A09: Security Logging and Monitoring Failures.

The loginCustomer method implements user login functionality using Spring Secu-
rity components, such as UserDetailsService, UsernamePasswordAuthenticatio
-nToken, AuthenticationManager, and SecurityContextHolder. As shown in
Figure 5.6, the method follows the architectural conventions of Spring Security, del-
egating authentication logic to the framework’s built-in components and appropri-
ately setting the security context upon successful login.

Figure 5.6: loginCustomer Feature

From a best practices perspective, the feature exhibits clear strengths. It leverages
Spring Security’s abstraction layers for authentication, reducing the likelihood of
insecure custom logic. It also ensures that authenticated sessions are correctly reg-
istered via the security context. These choices align well with modularity principles
and security-by-design patterns. However, the implementation reveals several devia-
tions from OWASP recommendations, as outlined in Table 5.9. The method handles
plaintext passwords without any visible in-memory protection, which increases the
risk of sensitive data leakage. Additionally, there is no observable mechanism for
brute-force protection, such as login attempt throttling or account lockout, and the
absence of multi-factor authentication (MFA) significantly reduces the feature’s re-
silience against common attack vectors. Further weaknesses include the lack of struc-
tured logging, error handling, and no clear indication of Cross-Site Request Forgery
(CSRF) protection or session expiration enforcement.

5.7 Comparison with Best Practices and Standards (RQ5) 59

Table 5.9: Security Concerns and OWASP Violations in the loginCustomer Method

Issue Description
OWASP

Reference Recommendation
Plaintext Password

Handling Password is stored and passed
as a String, exposing it in
memory longer than needed.

A07:2021 –
Identification and
Authentication
Failures

Use char[] instead of String
and clear it after use. Minimize
memory exposure.

No Brute-force
Protection No throttling or account lock-

out mechanism for repeated
failed login attempts.

A07:2021 –
Identification and
Authentication
Failures

Implement login attempt track-
ing, rate limiting, and tempo-
rary lockouts.

Lack of Logging No indication that login at-
tempts (success/failure) are be-
ing logged for monitoring.

A09:2021 –
Security Logging
and Monitoring
Failures

Securely log authentication at-
tempts (without passwords) for
audit and detection.

Missing Multi-Factor
Authentication (MFA) Only username and password

are used for authentication.
A07:2021 –
Identification and
Authentication
Failures

Integrate MFA such as TOTP,
SMS-based OTP, or authenti-
cator apps for additional secu-
rity.

No Error Handling No try-catch block is present
for handling authentication
failures.

A07:2021 –
Identification and
Authentication
Failures

Handle exceptions securely and
provide generic messages like
“Invalid credentials.”

Unclear
CSRF/Session
Handling

Session expiration, CSRF pro-
tection, and session manage-
ment aren’t visible in this
method.

A05:2021 – Se-
curity Misconfig-
uration

Ensure CSRF tokens are used
and sessions are invalidated on
logout or timeout.

To further respond to RQ5, a comparative evaluation was also conducted on the
other login-related authentication features implemented in the other five analyzed
projects.The analysis revealed a wide spectrum of design choices and security prac-
tices:

OpenRefine implements its own login logic, managing cookies and credentials man-
ually. While CSRF token checks are present, there is no observable error handling,
MFA, or brute-force protection. Sensitive credential data is handled in plaintext
strings and persisted in cookies, raising significant concerns regarding memory safety
and session misuse.

Traccar demonstrates a more mature design. It includes multi-factor authentica-
tion through TOTP, supports LDAP integration, and contains explicit checks for
user state and session token validation. However, password memory safety and log-

60 5 Study Results

ging mechanisms are not clearly visible in the implementation.

LibrePlan delegates authentication to Spring Security using UsernamePasswor-
dAuthenticationToken and AuthenticationManager, offering a clean and modular
design. However, due to abstraction, auxiliary security features such as brute-force
defense and MFA are not assessable at the code level and depend on the broader
framework configuration.

OpenMRS performs contextual authentication with custom session notifications.
Although the method provides structured exception handling and user session track-
ing, it lacks MFA and logging of failed login attempts, and password protection
mechanisms are not clearly observable.

Java NATS does not employ conventional username/password authentication. In-
stead, it relies on cryptographic key-based identity and challenge-response verifica-
tion using Ed25519 keys. This method is robust against traditional login vulnera-
bilities (e.g., brute-force attacks) but also places the burden of secure key handling
and storage on the user.

In summary, while all systems implement authentication features, only Traccar and
Java NATS exhibit stronger adherence to OWASP recommendations. Most imple-
mentations—especially those relying on custom or semi-custom code—lack compre-
hensive protective measures such as MFA, secure credential storage, and brute-force
mitigation. This comparison reinforces a key insight from the study: adopting secu-
rity frameworks alone is not sufficient unless accompanied by conscious integration of
holistic security practices around the authentication logic.

RQ5:How secure are security features implemented, and do they fol-
low best practices and security standards? To answer the fifth research
question, a comparative analysis revealed that while most projects rely on estab-
lished frameworks, their implementations often lack essential protections such
as brute-force defense, MFA, and secure password handling. This confirms that
using a security framework alone does not ensure adherence to best practices or
known security standards.

6 Discussion

6.1 Implications for Software Security

This study underscores the critical role that security features play in the broader
context of software security. By investigating how security features are implemented,
distributed, and maintained in real-world software systems, this work contributes to
a deeper understanding of their practical nature and sheds light on current limita-
tions in their identification and traceability.

The methodologies proposed and evaluated in this study aim to improve the process
of locating and tracking security features in size-variant and complex codebases. In
doing so, they address one of the core challenges faced by practitioners: the ability
to rapidly detect, analyze, and patch security features in response to vulnerabilities.
Since effective remediation is contingent upon accurate identification, it becomes
essential to develop time-efficient and resource-conscious techniques that reduce the
cognitive and operational overhead for developers. This study emphasizes that one
cannot fix what cannot be found—hence, the importance of refined, accurate feature
identification tools and processes.

Moreover, the categorization of security features based on a formal taxonomy enables
a clearer understanding of the varying levels of criticality and sensitivity associated
with different features. Such classification is instrumental in identifying which fea-
tures directly safeguard sensitive data or enforce core security goals—confidentiality,
integrity, and availability—and therefore demand more rigorous scrutiny. The anal-
ysis of feature distribution within software architectures also offers key insights into
how security features are embedded and whether their placement supports or hin-
ders security-by-design. By studying their structural dispersion, developers and
architects can evaluate whether certain distribution patterns correlate with greater
robustness or, conversely, introduce maintainability and traceability challenges.

Finally, the resource-based classification—differentiating between custom-developed
and library-based security features—provides a lens through which to interpret de-
veloper practices and preferences in implementing security. This distinction not only
reflects varying levels of security expertise but also highlights the need to enhance
the usability of security libraries and frameworks. It further supports ongoing efforts

62 6 Discussion

to raise awareness among developers regarding secure coding practices and the im-
portance of understanding the implications of security feature integration, whether
manually or through third-party.

6.2 Implications on Related Work

Interestingly, contrary to assumptions made in prior research—which suggest that
developers primarily rely on external libraries for implementing security [35]—our
findings show a more balanced or even custom-heavy usage of security features.
However, due to the relatively small input set in this study, such observations must
be interpreted cautiously and should not be generalized beyond the current sample.

The findings and discovered metrics shown in 5.5 provide quantitative evidence
supporting the challenges of managing security features in practice. The observed
distribution patterns align with prior research findings, such as those by Hermann
et al. [6, 35] and Santos et al. [15], which emphasize that security functionality
is often not localized, but rather scattered and deeply embedded across multiple
layers of software systems. These findings highlight the importance of traceabil-
ity tools and structured annotations, such as those employed in this study, for
maintaining security-relevant code and understanding its broader architectural im-
pact.

6.3 Contribution Limitations

While this study offers valuable insights into the identification and analysis of secu-
rity features in software systems, several limitations must be acknowledged. First,
the scope of this research was limited to software projects written in Java. Java
was selected due to its widespread adoption in the software engineering community
and its strong presence in large-scale systems. However, the language-specific na-
ture of the analysis implies that the findings may not directly generalize to software
developed in other programming languages. Languages such as Python, C++, or
JavaScript differ in syntax, paradigms, and security practices, which may influ-
ence or affects how security features are implemented and distributed.

6.4 Validity Threats 63

6.4 Validity Threats

6.4.1 Construct Validity

Construct validity concerns whether the study accurately measures what it intends
to measure. In this thesis, the central construct is the notion of "security features"
and their traceability within software systems. One threat to construct validity lies
in the reliance on security keywords to represent security features. While grounded
in a well-defined taxonomy and supported by a curated keyword list, this approach
may still overlook security features that are implemented in non-standard or highly
abstract ways. Moreover, using a script-based and annotation-driven methodology
risks missing context-sensitive implementations that cannot be detected through
static analysis alone.

6.4.2 Internal Validity

As I am a student with a background in IT-Security, this may have introduced bias
during the manual validation process. Overconfidence in identifying and classifying
security features could have led to subjective decisions, particularly in borderline
cases or ambiguous code segments. While efforts were made to remain consistent and
systematic, this human factor cannot be entirely excluded.

6.4.3 External Validity

External validity addresses the extent to which findings can be generalized beyond
the studied cases. The vast size and scale of modern software systems pose a sig-
nificant challenge in this thesis, as they complicate the identification, analysis, and
evaluation of security features. It also makes it hard to estimate the needed vol-
ume of input to derive clear and meaningful findings. With millions of lines of code
and complex interdependencies, the dispersion of security measures across large sys-
tems further complicates feature identification. Additionally, the study is limited to
Java-based repositories and a relatively small input set of 6 projects. While these
were selected to vary in size, complexity, and domain, the small sample may not
fully represent the diversity of software practices, reducing the generalizability of
the findings to other programming languages or ecosystems.

64 6 Discussion

6.5 Future Work

6.5.1 Continuous Improvements

One of the primary avenues for future work involves the continued refinement of
the tools and datasets used in this study. By analyzing a larger and more di-
verse set of software systems, the security keyword list can be further expanded
and validated, improving its effectiveness in capturing real-world implementations.
Likewise, the security library API detection tool should be iteratively extended
with newly discovered frameworks and libraries. These updates aim to maximize
the success rate of identifying and locating security features while minimizing false
positives, ultimately enhancing the robustness and reliability of the mining pro-
cess.

6.5.2 Integrating ML Models

Another potential direction is the integration of machine learning techniques. If
a sufficiently large dataset of annotated software repositories with their identified
security features can be compiled, it could serve as training data for machine learning
models. These models could then automatically identify and locate both custom-
developed and library-imported security features. Furthermore, such models could
be trained to classify features according to predefined taxonomies and even evaluate
the quality of implementations, offering recommendations or flagging weak security
patterns for developer attention.

6.5.3 Using LLM Models

A forward-looking idea involves leveraging large language models (LLMs) trained
on a curated dataset of securely implemented security features. Such a model could
support developers during development by suggesting complete, secure templates for
specific security features, which can be easily adapted to project-specific needs. Ad-
ditionally, it could offer context-aware recommendations and best practices, helping
developers implement robust security features even without deep security exper-
tise. This approach has the potential to democratize access to secure development
practices and significantly improve software security outcomes across diverse devel-
opment environments.

7 Conclusion

This thesis presented a structured investigation into the practical implementation
and distribution of security features within real-world Java software systems. By
employing a combination of SCA tools, keyword-based searches, and structured an-
notation methods, security features were systematically identified, categorized, and
evaluated, providing a comprehensive overview of their nature within software sys-
tems codebases.

Security features were located and identified through a methodology combining secu-
rity libraries API detection tool and keyword-based search tool, resulting in the au-
tomated detection of 230 security features imported from libraries and frameworks
and 436 custom-implemented features across six Java open-source projects. Notably,
the analysis revealed that a portion of security logic (144 custom-implemented fea-
tures identified) extends or wraps existing functionalities from established security
libraries, especially in cryptographic (e.g., Encryption, Signature) and authentica-
tion domains.

Evaluating the structural integration and robustness of security features revealed dis-
tinct distribution and implementation patterns. Metrics such as Scattering Degree,
Tangling Degree, and Nesting Depth showed that features like Session Management
and Cryptography tend to be widely dispersed and deeply embedded, confirming the
cross-cutting nature of security logic that complicates maintenance and validation.
A complementary assessment aligned with OWASP standards highlighted signifi-
cant variance in implementation quality, indicating that relying solely on security
frameworks does not inherently guarantee adherence to best practices.

In conclusion, this thesis provides actionable insights and tools that enhance the un-
derstanding, traceability, and security robustness of security features implemented
within software systems. It highlights the necessity of holistic security practices
that complement library usage with comprehensive integration strategies. Future
research should focus on refining automated detection methods by expanding the
scope of supported security libraries, incorporating machine learning to enhance ac-
curacy and efficiency, and extending the approach to diverse programming environ-
ments. Such advances promise further improvements in secure software development
practices and more secure software systems.

List of Figures

2.1 Top-level of Security Features Taxonomy [6] 10
2.2 Feature model, feature-to-file, and feature-to-folder Mappings Exam-

ple [29] . 16
2.3 Feature Block Annotation Example 17
2.4 Sub-features of the security feature Secure Data handling [6] 18

3.1 Mining Study Workflow Design . 21
3.2 Keywords-Features Mapping Examples 27
3.3 Security Feature Model Example . 29

4.1 Security Hotspots Categories . 34
4.2 Security Hotspots Navigation . 35
4.3 SonarQube Findings Example . 35
4.4 Semgrep Findings Example . 36
4.5 Initial Output Insights Example . 40
4.6 ".feature-model" File Example . 41
4.7 Security Features Classification and Labeling Example 42
4.8 Results from Located Features Example 44

5.1 Comparison of Library vs Custom Features Identified per Project . . 49
5.2 Comparison of Feature Detection Sources per Project 51
5.3 High Level and Low Level Features Example 53
5.4 Observed Pattern Example . 56
5.5 Security Modular Structure Example 57
5.6 loginCustomer Feature . 58

Bibliography

[1] Gary McGraw. “Software security”. In: IEEE Security & Privacy 2.2 (2004),
pp. 80–83.

[2] Amir A Khwaja, Muniba Murtaza, and Hafiz F Ahmed. “A security feature
framework for programming languages to minimize application layer vulnera-
bilities”. In: Security and Privacy 3.1 (2020), e95.

[3] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. “SNIAFL: Towards
a static noninteractive approach to feature location”. In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 15.2 (2006), pp. 195–226.

[4] Sven Apel and Christian Kästner. “An overview of feature-oriented software
development.” In: J. Object Technol. 8.5 (2009), pp. 49–84.

[5] Julia Rubin and Marsha Chechik. “A survey of feature location techniques”.
In: Domain Engineering: Product Lines, Languages, and Conceptual Models
(2013), pp. 29–58.

[6] K. Hermann, S. Schneider, C. Tony, A. Yardim, S. Peldszus, T. Berger, R.
Scandariato, A. Sasse, and A. Naiakshina. “A Study of Functional Security
Features and Their Representation in Security Frameworks”. In: (2024).

[7] Katja Tuma, Sven Peldszus, Daniel Strüber, Riccardo Scandariato, and Jan
Jürjens. “Checking security compliance between models and code”. In: Soft-
ware and systems modeling 22.1 (2023), pp. 273–296.

[8] S. Peldszus, F. Reiche, K. Hermann, S. Corallo, T. Berger, and R. Heinrich.
“Can I Check What I Designed? Mapping Security Design DSLs to Code
Analyzers”. In: (2024).

[9] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline
Silva, Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. “What is
a feature? a qualitative study of features in industrial software product lines”.
In: Proceedings of the 19th international conference on software product line.
2015, pp. 16–25.

[10] Jan Bosch. Design and use of software architectures: adopting and evolving a
product-line approach. Pearson Education, 2000.

[11] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. “Scaling step-wise re-
finement”. In: IEEE Transactions on Software Engineering 30.6 (2004), pp. 355–
371.

[12] Kun Chen, Wei Zhang, Haiyan Zhao, and Hong Mei. “An approach to con-
structing feature models based on requirements clustering”. In: 13th IEEE
International Conference on Requirements Engineering (RE’05). IEEE. 2005,
pp. 31–40.

[13] KYOC KANG, SHOLOMG COHEN, JAMESA HESS, WILLIAME NOVAK,
and AS PETERSON. “Feature-Oriented Domain Analysis(FODA) feasibility
study(Final Report)”. In: (1990).

[14] Matthias Riebisch. “Towards a more precise definition of feature models”. In:
Modelling variability for object-oriented product lines (2003), pp. 64–76.

[15] Joanna CS Santos, Katy Tarrit, and Mehdi Mirakhorli. “A catalog of security
architecture weaknesses”. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). IEEE. 2017, pp. 220–223.

[16] Joanna CS Santos, Katy Tarrit, Adriana Sejfia, Mehdi Mirakhorli, and Matthias
Galster. “An empirical study of tactical vulnerabilities”. In: Journal of Systems
and Software 149 (2019), pp. 263–284.

[17] John M Blythe, Nissy Sombatruang, and Shane D Johnson. “What security
features and crime prevention advice is communicated in consumer IoT device
manuals and support pages?” In: Journal of Cybersecurity 5.1 (2019), tyz005.

[18] Rémy Druyer, Lionel Torres, Pascal Benoit, Paul-Vincent Bonzom, and Patrick
Le-Quéré. “A survey on security features in modern FPGAs”. In: 2015 10th
International Symposium on Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC). IEEE. 2015, pp. 1–8.

[19] Ariessa Davaindran Lingham, Nelson Tang Kwong Kin, Chen Wan Jing, Chong
Heng Loong, et al. “Implementation of Security Features in Software Devel-
opment Phases”. In: arXiv preprint arXiv:2012.13108 (2020).

[20] Mukelabai Mukelabai, Kevin Hermann, Thorsten Berger, and Jan-Philipp
Steghöfer. “Featracer: Locating features through assisted traceability”. In:
IEEE Transactions on Software Engineering (2023).

[21] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,
Michelle L Mazurek, and Christian Stransky. “Comparing the usability of
cryptographic apis”. In: 2017 IEEE Symposium on Security and Privacy (SP).
IEEE. 2017, pp. 154–171.

[22] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. “Usability Smells: An Anal-
ysis of {Developers’} Struggle With Crypto Libraries”. In: Fifteenth Sympo-
sium on Usable Privacy and Security (SOUPS 2019). 2019, pp. 245–257.

[23] Irshad Ahmad Mir and SMK Quadri. “Analysis and evaluating security of
component-based software development: A security metrics framework”. In:
International Journal of Computer Network and Information Security 4.11
(2012), p. 21.

[24] Jacob Krüger, Thorsten Berger, and Thomas Leich. “Features and how to
find them: a survey of manual feature location”. In: Software Engineering for
Variability Intensive Systems. Auerbach Publications, 2019, pp. 153–172.

[25] Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake.
“Effects of explicit feature traceability on program comprehension”. In: Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering.
2019, pp. 338–349.

[26] Leonardo Passos, Krzysztof Czarnecki, Sven Apel, Andrzej Wąsowski, Chris-
tian Kästner, and Jianmei Guo. “Feature-oriented software evolution”. In:
Proceedings of the 7th International Workshop on Variability Modelling of
Software-Intensive Systems. 2013, pp. 1–8.

[27] Dapeng Liu and Shaochun Xu. “A Tool Suite for Java Program Tracing and
Feature Location”. In: 2009 10th ACIS International Conference on Soft-
ware Engineering, Artificial Intelligences, Networking and Parallel/Distributed
Computing. IEEE. 2009, pp. 469–474.

[28] Willian DF Mendonça, Silvia R Vergilio, Gabriela K Michelon, Alexander
Egyed, and Wesley KG Assunção. “Test2feature: Feature-based test trace-
ability tool for highly configurable software”. In: Proceedings of the 26th ACM
International Systems and Software Product Line Conference-Volume B. 2022,
pp. 62–65.

[29] Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. “A common nota-
tion and tool support for embedded feature annotations”. In: Proceedings of the
24th acm international systems and software product line conference-volume
b. 2020, pp. 5–8.

[30] Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger,
Alexandre Bergel, and Truong Ho-Quang. “HAnS: IDE-based editing support
for embedded feature annotations”. In: New York, NY, USA: Association for
Computing Machinery, 2021. isbn: 9781450384704.

[31] Xiang Li, Jinfu Chen, Zhechao Lin, Lin Zhang, Zibin Wang, Minmin Zhou,
and Wanggen Xie. “A mining approach to obtain the software vulnerability
characteristics”. In: 2017 fifth international conference on advanced cloud and
big data (CBD). IEEE. 2017, pp. 296–301.

[32] Andreas Mauczka, Christian Schanes, Florian Fankhauser, Mario Bernhart,
and Thomas Grechenig. “Mining security changes in FreeBSD”. In: 2010 7th
IEEE Working Conference on Mining Software Repositories (MSR 2010). IEEE.
2010, pp. 90–93.

[33] Vinod Ganapathy, David King, Trent Jaeger, and Somesh Jha. “Mining security-
sensitive operations in legacy code using concept analysis”. In: 29th Interna-
tional Conference on Software Engineering (ICSE’07). IEEE. 2007, pp. 458–
467.

[34] Stratoflow. Why is Java so popular? Accessed: 2025-02-14. 2023. url: https:
//stratoflow.com/why-is-java-so-popular/?utm_source=chatgpt.com.

[35] Kevin Hermann, Sven Peldszus, Jan-Philipp Steghöfer, and Thorsten Berger.
“An Exploratory Study on the Engineering of Security Features”. In: arXiv
preprint arXiv:2501.11546 (2025).

https://stratoflow.com/why-is-java-so-popular/?utm_source=chatgpt.com
https://stratoflow.com/why-is-java-so-popular/?utm_source=chatgpt.com

	List of Acronyms
	Introduction
	Motivation
	Research Questions
	Contributions
	Organization of this Thesis

	Background
	Overview of Security Features
	Locating and Identifying Security Features
	Challenges in Security Features Implementation, Maintenance and Analysis
	Tools and Techniques for Features Traceability
	Embedded Feature Annotations
	Helping Annotate Software (HAnS)

	Security Features Taxonomy
	Related Work

	Methodology
	Mining Study Workflow Design
	Repositories Selection Process
	Locating and Identifying Security Features
	SonarQube
	Semgrep
	Keyword-Based Search
	Security Keywords and Rules
	Embedded Feature Annotations
	Security Features Sources

	Security Features Analysis
	Exploring Security Features Distribution
	Features Implementation Analysis

	Implementation
	Security Features Locating and Identification Process
	Using SCA Tools in Locating and Identification Process
	SonarQube
	Semgrep

	Keyword-Based Search
	Input Filtering
	Security Keywords and Rules
	Embedded Feature Annotations

	Security Features Classification and Labeling
	Features Imported from Security Frameworks and Libraries

	Study Results
	Security Features Locating and Identification Process Evaluation ([rq:1.1]RQ1)
	SCA Tools Results
	Input Set Projects
	Keyword-Based Search Results

	Categorizing Security Features ([rq:1.2]RQ2)
	Security Library API Detection Tool Results ([rq:1.3]RQ3)
	Security Library API Detection Tool Evaluation
	Security Features Distribution Evaluation ([rq:1.4]RQ4)
	Insights on Modular Design

	Insights on Context of Use
	Comparison with Best Practices and Standards ([rq:1.5]RQ5)

	Discussion
	Implications for Software Security
	Implications on Related Work
	Contribution Limitations
	Validity Threats
	Construct Validity
	Internal Validity
	External Validity

	Future Work
	Continuous Improvements
	Integrating ML Models
	Using LLM Models

	Conclusion
	List of Figures
	Bibliography

