
A Controlled Experiment on Using Embedded
Annotations for Documenting Feature Locations
in Code

Hasanain Qaddoori Hussein Al-Aassi

Master’s Thesis – July 21, 2024
Chair of Software Engineering.

Supervisor: Prof. Dr. Thorsten Berger
Advisor: Wardah Mahmood

Abstract

Documenting the features of a software system is a fundamental yet challenging
task in software development. Developers often invest considerable time during
development, locating features in extensive software systems due to their spatial
distribution in the code base [32, 39]. In response to this challenge, the HAnS
(Helping Annotate Software) tool was developed to facilitate the documentation of
these features in a managed way, providing a hierarchical overview for the annotated
features [15, 22]. An extension of the HAnS tool, the Logger tool, was employed
to record the feature annotation durations [33]. This thesis study evaluates the
usability of documenting embedded feature annotations using the HAnS tool and
the accuracy of the Logger tool in recording embedded feature annotations. To assess
this, a user study was conducted in which participants utilized the HAnS tool to
add, edit, and navigate feature annotations throughout the development process in
various task scenarios. Quantitative and qualitative data were collected to evaluate
the invested effort (in terms of time) in completing the tasks. The results of the
controlled experiment show that the HAnS tool is user-friendly and practical for
use in large systems. While the Logger tool showed overall accuracy in recording
feature annotations, statistical tests revealed discrepancies, particularly with block
annotations. These findings highlight the potential of embedded feature annotations
to improve the traceability and management of these features, leading to a reduction
in the development effort and an enhancement in code maintainability. This study
also identifies potential areas for further development or refinement of the HAnS
tool, providing invaluable insights into the benefits and difficulties associated with
using feature annotations and establishing a foundation for future advancements in
this field.

Acknowledgements

First, I would like to thank my supervisor, Professor Thorsten Berger, for his invalu-
able support and understanding throughout this thesis. His timely and constructive
feedback was instrumental in improving and completing this thesis on time. I would
also like to thank my second supervisor, Wardah Mahmood, for her exemplary work
and consistent guidance throughout this thesis. The quality of this thesis has been
invaluably enhanced by her dedication, encouragement, and positive feedback. Fi-
nally, I would like to thank Kevin Hermann and Johan Martinson for their interest
in my work and helpful insights that have greatly improved the quality of this the-
sis.

Hasanain Al-Aassi, Bochum, July 2024

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contribution . 4
1.4 Organization of the Thesis . 5

2 Background 7
2.1 Feature . 7
2.2 Embedded Feature Annotations . 9
2.3 HAnS (Helping Annotate Software) 10

2.3.1 Feature model . 10
2.3.2 Feature-to-file mapping . 11
2.3.3 Feature-to-folder mapping . 12
2.3.4 Feature-to-code mapping . 12

2.4 Logger Tool . 13
2.5 The JetBrains IntelliJ IDE Support Platform 14
2.6 Feature-Oriented Software Development and Evolution 15

3 Methodology 19
3.1 Experimental Design . 19
3.2 Research Questions . 20
3.3 Experimental Setup . 21

3.3.1 Subject System Introduction 22
3.3.2 Tasks Design . 23
3.3.3 HAnS Tutorial Introduction 25
3.3.4 HAnS and Logger Tools Setup Guidelines 27

3.4 Participants . 27
3.4.1 Participant Selection Criteria 27
3.4.2 Recruitment Process . 27

3.5 Procedure of the Experimental Study 28
3.5.1 Preparation Phase . 28
3.5.2 Pilot Study . 28
3.5.3 Execution Phase . 29

3.6 Data Collection . 29
3.6.1 Quantitative Data . 30
3.6.2 Qualitative Data . 32

x Contents

3.7 Data Analysis . 32
3.8 Limitations and Challenges . 34

4 Results 35
4.1 RQ1: Accuracy . 35
4.2 RQ2: Effort . 38

4.2.1 Effort of using embedded feature traceability annotations dur-
ing development and the effort of recording annotations . . . 38

4.2.2 Effort of editing and removing annotations 41
4.2.3 Effort required for navigation and annotation 42

4.3 Participants Knowledge . 44
4.4 RQ3: Participants Perceptions . 47

4.4.1 RQ3.1: How difficult was it to decide when to add annotations? 49
4.4.2 RQ 3.2: How difficult was it to decide where to add annotations? 49
4.4.3 What do you think are the benefits of embedded feature trace-

ability annotations? . 50
4.4.4 In your opinion, what are the advantages of browsing embed-

ded feature traceability annotations? 52
4.4.5 How intuitive is it to browse embedded feature traceability

annotations? . 53
4.4.6 How would you rate the usability of using embedded feature

traceability annotations? . 54
4.4.7 The process of adding annotations enhances my understanding

of the codebase. 54
4.5 RQ4: Experience and Benefits . 55

4.5.1 What do you think are the benefits of the HAnS tool? 55
4.5.2 Technical issues or bugs encountered with the HAnS tool . . 57
4.5.3 Suggestions for improvement: 57
4.5.4 Experience with the HAnS tool 58

4.6 RQ5: Alignment of Developers’ Experience and Understanding with
their Mental Model . 59

5 Discussion 61
5.1 Discrepancies in Total Development Time 61
5.2 Inconsistencies in Total Annotation Time 61
5.3 Differences in Block and Line Annotations 62
5.4 Unaccounted Block and Line Annotations 62
5.5 Effort in Navigating and Annotating 63
5.6 Experimental Execution Times . 64
5.7 User Perception and Qualitative Insights 64

6 Threats to Validity 65

7 Conclusion 67

Contents xi

List of Figures 69

List of Tables 70

Bibliography 74

A Experiment Materials 79
A.1 HAnS Tutorial Introduction . 79
A.2 Installation Guidelines for the HAnS Plugin and Logger Tool. 88
A.3 DARTPlus Subject System Features 91
A.4 Scenarios - Tasks . 93
A.5 dartData.txt . 97

B Times for validating the accuracy of the Logger tool. 99
B.1 Participant 1: . 99
B.2 Participant 2: . 101
B.3 Participant 3: . 102
B.4 Participant 4: . 104
B.5 Participant 5: . 106
B.6 Participant 6: . 107
B.7 Participant 7: . 109
B.8 Participant 8: . 110
B.9 Participant 9: . 111
B.10 Participant 10: . 113
B.11 Participant 11: . 114
B.12 Participant 12: . 115
B.13 Participant 13: . 117

C Effort for annotating including the navigating time. 119
C.1 Participant 1: . 119
C.2 Participant 2: . 121
C.3 Participant 3: . 122
C.4 Participant 4: . 123
C.5 Participant 5: . 124
C.6 Participant 6: . 125
C.7 Participant 7: . 126
C.8 Participant 8: . 127
C.9 Participant 9: . 128
C.10 Participant 10: . 130
C.11 Participant 11: . 131
C.12 Participant 12: . 132
C.13 Participant 13: . 133

D Questionnaire Form 135

xii Contents

E Questionnaire Responses 149

1 Introduction

Software development is a diverse and constantly evolving field. It is common for
software development to be planned and organized around features. In the con-
text of software, features are functional or characteristic aspects that are identified
during the development cycle, maintenance, and evolution [6, 25]. These features
are used in software planning and represent the common language and management
of the development process for the developers [6, 19, 35]. However, the number of
features grows substantially as software size and complexity increase. This expan-
sion introduces new challenges that every developer needs to consider. In software
engineering, feature location is the process of identifying and locating specific parts
of source code that correspond to a particular software feature [19]. One of the chal-
lenges the developers face is the accurate documentation and location of software
features within the codebase [19].

Despite its importance, the use of automated documentation features is not yet
widely adopted by developers in large software projects, especially those involving
code extension, maintenance, and cloning. Knowing the location of features through-
out the software’s evolution, including for code reuse and enhancements, is crucial
for developers [20, 23].

This experiment aims to investigate the efficiency and effort developers require in
terms of time to write embedded feature annotations in real-world scenarios during
the development process. This will be achieved by measuring the time taken to
complete the annotation process using the HAnS (Helping Annotate Software) tool.
HAnS is a Java-based plugin that facilitates the annotation process by allowing the
user to specify feature mappings to different types of assets within the code [15, 22].
It incorporates the Logger tool, which serves as an extension of HAnS to record the
time taken to complete these feature annotations [33].

1.1 Motivation

The task of locating features presents a significant challenge. Developers often spend
considerable time understanding the codebase and locating these features during the
software development. This intense focus on feature location sometimes results in
delays in other important tasks. In addition, even when they attempt to locate
these features, they may overlook various potential locations where the features are

2 1 Introduction

implemented because of their scattered nature. A limited understanding of the code
or a lack of experience with a programming language can pose additional challenges.
Studies by Wilde et al. [40], Revelle, Broadbent, and Coppit [28], Wang et al. [39],
and Jordan et al. [17] acknowledge the importance of a developer’s experience and
knowledge but do not definitively establish the positive or negative effects of these
factors on performance. Corresponding studies with a similar focus are essential for
identifying and evaluating the factors significantly influencing the feature location
process. It is essential to identify specific code portions related to features, but due
to the intricacies of software systems and intricate interdependencies, the process
of feature location is both time-consuming and prone to errors [39, 32]. Despite
the notable achievements of various feature location techniques [32], feature loca-
tion remains an activity that relies heavily on human expertise and domain-specific
knowledge, making it risky to underestimate the role of human factors in this process
[14].

This study aims to evaluate the effectiveness of using embedded annotations with
the HAnS tool in facilitating documentation of embedded feature annotations in
code. The evaluation examines the accuracy of the Logger tool for recording feature
annotations and includes a user study experiment utilizing the HAnS tool. This ex-
periment aims to measure the effort (in terms of time) developers require to write,
edit, navigate, and document feature annotations during the development process
in real-world scenarios. In addition to assessing the usability of the HAnS tool, this
study also investigates the efficiency of feature annotations. The findings contribute
to the field of embedded feature annotations by providing qualitative and quantita-
tive insights into the annotations’ effectiveness and the overall utility of the HAnS
tool.

In brief, this thesis aims to address the significant challenges of feature annota-
tions in software development using the HAnS tool to streamline the documenta-
tion process. This research also aims to provide valuable insights into the prac-
tical benefits and efficiencies of embedded feature annotation through a compre-
hensive evaluation, including an accuracy assessment of the Logger tool via a user
study experiment, ultimately contributing to improved software development prac-
tices.

1.2 Related Work

Several studies exist on finding and evolving features in software product lines.
These are third-party tools designed for extracting features from code, where their
strength lies in the extraction process and application of heuristics. Therefore, these
tools focus primarily on feature extraction and using heuristics without considering
the realm of annotation creation. For instance, consider the product-line migration
framework of Rubin et al. [30, 31]. They introduced operators that align with the

1.2 Related Work 3

idea that mechanization leads to more efficient implementation and support, specif-
ically from an operator-based perspective. Fischer et al. [11] present a framework
and a tool (called ECCO) that heavily leans on heuristics to identify commonalities
and enable the creation of new product variants using reusable resources. Similarly,
the BUT4Reuse tool by Martinez et al. [21] specializes in extraction techniques
for product-line migration, even incorporating support for feature-model synthesis.
Their framework relies mainly on heuristics for feature extraction. These existing
works are less than ideal, as they rely on heuristics, which can lead to inaccuracies
in feature location. There is a notable shortfall in the systems available for bench-
marking against actual revision histories that include accessible feature information.
This challenge has become a central focus of their ongoing benchmarking initiative
[36, 5]. Many feature visualization tools are created specifically for software product
lines or systems with high configurability [23, 20]. However, only a few are specif-
ically tailored for embedded feature annotations. For instance, in [35], FAXE is a
tool for extracting feature annotations. This tool facilitates language independence
and seamless integration into IDEs and other software tools. It is a Java library
that can retrieve annotations, perform metric calculations, detect inconsistencies,
and rename features. Nonetheless, it lacks the editing functionality. For example, in
extensive and complex software systems, this feature location can swiftly become a
challenging and error-prone endeavor [39, 28], particularly when features are spread
out across software components [17]. Despite the existence of automated tools for
locating features [39], they require specific configurations or setup efforts for each
project and tend to produce numerous incorrect results, making them less practical
for real-world applications [30].

FLORiDA [2] is a standalone Java application. It offers multiple feature views and
metrics, such as tangling and scattering degrees. The VariantSync tool by Pfofe et
al. allows users to add feature tags to code changes to make categorization easier
[26].

Previous studies, including those by Wilde et al. [40], Revelle, Broadbent, and
Copet [28], Wang et al. [39], and Jordan et al. [17], have investigated the impact
of developer experience and knowledge on performance but did not establish any
effects of these factors on performance.

However, no empirical studies currently measure the effort (in terms of time) in-
volved in using the functionalities of documenting features to assets of different
types during development. Although the previous tool appears useful, the lack
of empirical data limits a comprehensive assessment of its efficiency in real-world
development workflows. Further research may be needed to quantify the practi-
cal implications and benefits of embedded annotations using HAnS. In addition,
these tools are challenged by the setup effort and the need for specific code entry
points for feature locations, which also require focusing on tool training by develop-
ers.

4 1 Introduction

In response to the challenges mentioned earlier and to facilitate software maintenance
and reuse, the HAnS plugin was developed to help developers proactively create em-
bedded feature annotations within code assets (rather than recovering them as in the
earlier works mentioned). HAnS facilitates the development process by enabling the
user to map and annotate features within different types of software assets, including
folders, files, code lines, and code segments [22].

For the HAnS tool, as discussed in [22], researchers advocate that features should
be recorded proactively instead of being extracted. This approach, in which devel-
opers write features themselves rather than relying on heuristics, is more accurate
and requires no setup effort, as developers can write annotations during ordinary
development. HAnS itself requires additional effort; however, this additional effort
is expected to overcome the cost of manually locating features. Despite the effec-
tiveness of using embedded feature annotations with HAnS, no study has been yet
conducted to accurately measure the time investment required to use embedded
feature annotations during development. Furthermore, there is a lack of subjective
data regarding the tool’s usability for this purpose. Therefore, an empirical study is
essential to gain an accurate understanding of the effort (in terms of time) required
to use embedded feature annotation with the HAnS tool. The goal of the proposed
master’s thesis is to contribute new knowledge to the software engineering field by
conducting a controlled experiment using the HAnS tool to document feature lo-
cations. It also aims to provide empirical evidence of the HAnS tool’s efficiency
and usability in the context of embedded annotation in real software development
scenarios.

1.3 Contribution

The goal of this thesis is to contribute to the field of software development by as-
sessing the HAnS tool, which facilitates programmers’ creation of embedded feature
annotations by programmers [15, 22]. The research presents a combination of quan-
titative and qualitative data obtained from a user study, which provides insights into
the effort required to document feature annotations in terms of time. This highlights
the practical advantages of utilizing these annotations.

A key factor is evaluating the accuracy of the Logger tool in capturing feature an-
notations. The experiment demonstrates that the Logger tool reliably tracks anno-
tation activity, ensuring reliable documentation of feature locations. This accuracy
is critical for future reference, cloning, and maintenance tasks. The usability of
the HAnS tool is also evaluated, providing insights into its intuitiveness and usabil-
ity that can inform the development of similar tools and guide developers in using
embedded feature annotations in code.

The research is necessary because keeping track of feature annotations within the
code is difficult due to the lack of proper documentation during development. This

1.4 Organization of the Thesis 5

can lead to the loss of features, making it hard to maintain, clone, and under-
stand the codebase in the future. One potential solution is to record feature lo-
cations, but it is often seen as time-consuming and challenging. This study mea-
sures the effort (in terms of time) required to create embedded feature annota-
tions during development, allowing us to compare this effort to total development
time.

The contribution includes a controlled experiment, quantitative and qualitative anal-
yses, and an appendix containing all materials related to the user study. These
comprise detailed data from the user study, reading handouts, a questionnaire with
responses, and additional analyses [1]. This comprehensive approach provides a ro-
bust evaluation of documenting feature annotations using the HAnS tool and its
practical implications for software development.

The results serve as a foundation for future research, suggesting enhancements such
as feature visualization and metrics, integration with different development envi-
ronments, and improvements to the logger and HAnS tools. Overall, this thesis
advances the field by providing new insights and practical solutions for improving
feature traceability, managing code maintenance, developing productivity, and doc-
umenting feature locations accurately.

1.4 Organization of the Thesis

This thesis is structured to present a comprehensive experiment on embedding fea-
ture annotations using the HAnS tool and its effectiveness in automatically docu-
menting feature locations. The experiment focuses on measuring the effort required
to write embedded feature annotations in code, thereby evaluating the accuracy of
the Logger tool, conducting user studies, and analyzing both qualitative and quan-
titative data.

The thesis is organized as follows:

Chapter 2 presents the theoretical background, outlining the concepts related to
the work, including features and embedded feature annotations. This chapter also
provides an overview of the HAnS tool, explaining its functionality in the con-
text of automatic documentation of feature locations, and describes the Logger
tool.

Chapter 3 details the methodology used in this study, describing the design of the
user studies, the experimental setup, the data collection methods, and the process
of evaluating the accuracy of the Logger tool in documenting feature annotations.
This chapter provides the necessary context for understanding the experiment con-
ducted.

6 1 Introduction

Chapter 4 presents the study’s results. This includes the user studies’ results, quan-
titative data (such as the effort required to complete feature annotations during
development), and qualitative participant feedback. It also includes an analysis
of the logger tool’s accuracy compared to video recordings of the annotation pro-
cess. The results related to the effort in navigating time and annotating are also
presented.

Chapter 5 discusses the study results’ implications in detail. This chapter examines
the discrepancies between the Logger and video data and discusses the potential rea-
sons for these differences. Additionally, it discusses the effort of navigating time and
annotating, user perception, and qualitative insights.

Chapter 6 examines the study’s validity threats. It discusses internal validity, ex-
ternal validity, construct validity, and reliability, providing a critical assessment of
the factors that might have influenced the results and how these threats were miti-
gated.

In conclusion, Chapter 7 summarizes the essential findings and their contributions
to the field of software engineering. The chapter highlights the practical benefits of
using embedded feature annotations and the HAnS tool and suggests areas for future
research. Additionally, the chapter considers the study’s limitations and potential
improvements for the HAnS tool.

By organizing this thesis in this manner, a logical progression will be evident from
discussing the background and motivation behind the research through a detailed
analysis of the results, concluding with insights and recommendations for future
work.

2 Background

2.1 Feature

Features in software development serve as fundamental building blocks used for plan-
ning, managing, and communicating the functionality of the development process
[6, 35]. These features provide a common language for defining, monitoring, and
communicating how software systems work, making it easier for developers to un-
derstand, reuse, or modify them [19]. Consequently, features are used to describe the
functionality and characteristics of the software throughout the phases of software
development, maintenance, and evolution [6, 25]. Defining and understanding the
concept of features can be challenging. Nevertheless, an explicit definition, presented
earlier, can be stated as follows:

“A feature is a characteristic or end-user-visible behavior of a
software system. Features are used in product-line engineer-
ing to specify and communicate commonalities and differences
of the products between stakeholders, and to guide structure,
reuse, and variation across all phases of the software life cy-
cle.” [19]

In the previous definition, a feature in the software is a visible property or behav-
ior that users can interact with. It’s used in product line engineering to describe
what’s common or different between different software versions. Features guide how
the software is structured, reused, and modified throughout its life cycle. Tool sup-
port is essential to use feature annotations efficiently and encourage developers to
incorporate them seamlessly during development. That’s why HAnS (Helping An-
notate Software), an IDE plugin, was designed to assist developers in annotating
[22].

A feature model represents a software system’s characteristics or functionalities and
provides a hierarchical view of these features and their interrelationships. It is a
fundamental element of the software annotation system and organizes the various
components of a software system [6].

The task of tracking specific source code segments responsible for implementing a
given feature within a software system is called feature location. This process can
be manual or automated and facilitates tasks such as feature updating, reuse, and
maintenance [19].

8 2 Background

The concept of software feature location traceability can be defined as the pro-
cess of establishing a traceability link, a term with broader implications [3, 24].
This term has a broad implication, capturing multiple relationships between dif-
ferent artifact types, including both code and non-code elements such as require-
ments.

2.2 Embedded Feature Annotations 9

2.2 Embedded Feature Annotations

Embedded feature annotations (EFA) are comments that map code locations to
specific features, indicating that the annotated code fragment is part of the feature’s
implementation [35].

Embedded feature annotations provide a solution by embedding feature details di-
rectly into the source code. This approach ensures that feature locations remain eas-
ily accessible and can be updated during development [35].

Developers can use this annotation system to document the location of features in
folders, files, code fragments, and even individual lines of code. A feature model
provides a comprehensive enumeration of all the features present within a software
system, organized in a hierarchical tree structure [15]. Figure 2.1 below illustrates
how the features hierarchy in DARTPlus is designed with embedded feature anno-
tations.

Figure 2.1: Illustrates the Embedded Feature Annotations of the DARTPlus rent
system.

10 2 Background

2.3 HAnS (Helping Annotate Software)

HAnS is an open-source plugin for the IntelliJ integrated development environment
(IDE) that was presented by a team of researchers and developers from various
institutions, including Mukelabai Mukelabai, Thorsten Berger, Alexandre Bergel,
and Truong Ho Quang [22]. Additionally, Johan Martinson and Herman Jansson,
who also collaborated on the research of the HAnS (Helping Annotate Software) tool,
contributed to its development to ensure the effective use of feature annotations and
to facilitate developers to document them with the least impact on their development
tasks [15, 22].

HAnS provides detailed yet easy-to-use annotations to help developers understand
software features. With this tool, developers can effectively generate and docu-
ment various features within a feature model. It assists developers in annotating
various software elements like files, folders, and code fragments with the specific
features they are implementing. It provides helpful functionalities for creating and
evolving feature models over time. Additionally, the tool facilitates mapping fea-
tures to assets, including code completion for feature names and code syntax high-
lighting. Developers can also explore feature definitions and easily locate where
they are implemented within the system. Furthermore, the tool facilitates the re-
design of features, for instance, enabling developers to delete or rename features as
needed. This enhances flexibility and clarity in managing software features effec-
tively.

HAnS offers proper functionality for tracking features and their associated code
assets throughout the software system. In addition, the Logger tool was developed
as an extension of the HAnS plugin, which assists in recording embedded feature
annotations created by HAnS [33].

2.3.1 Feature model

A feature model represents the characteristics or functionalities of a software system.
It provides a hierarchical view of the different features of a system and how they
relate to each other. The feature model is the basis of the annotation system [6].
Creating a feature model using HAnS is done by creating a file in the root directory
of a project and naming it with ".feature-model" at the end. In this file, all the
features of the projects must be added and organized in a sort of hierarchy. Each
feature model should begin with the project root name and then the features added
below in hierarchical order, with indentation to show which features are part of other
features [15]. Whenever a developer makes changes to the ".feature-model", it is akin
to adding feature annotations to the project. An example of a project for the feature
model of a snake game is shown in Figure 2.2 below. It is significantly crucial for
developers to use the feature model when engaged in software development projects

2.3 HAnS (Helping Annotate Software) 11

in order to gain an understanding of and to be able to manage the functionality of
the system.

Figure 2.2: Feature model of the Snake game.

2.3.2 Feature-to-file mapping

The concept of feature-to-file mapping implies that the entirety of a file repre-
sents either a complete or partial implementation of a feature. This allows for
the association of individual features with the entire file. The mapping of fea-
tures to files is stored in a dedicated file identified by the ".feature-to-file" extension
[15].

Figure 2.3 illustrates the mapping between features within the files. The file names
and feature mappings are written in alternating lines. For instance, the SquarePanel.java
file includes implementing the "Tile" feature.

Figure 2.3: Feature-to-file mapping.

12 2 Background

2.3.3 Feature-to-folder mapping

Feature-to-folder is the mapping of entire folders and their contents to one or more
features. This allows specific features, including files and sub-components, to be
associated with the entire folder.

In the following example, the mapping of features to the folder is stored in a ded-
icated file identified by the ". feature-to-folder" extension, as shown in Figure
2.4.

Figure 2.4: Feature-to-folder mapping.

2.3.4 Feature-to-code mapping

The block annotation of the feature-to-code mapping function helps to associate spe-
cific blocks of code with one or more features. The source code segments mapped to
a particular feature are called annotation scopes. An annotation scope is enclosed
by annotation markers and includes at least one feature reference. The implemen-
tation of block annotation is defined as "//&begin" and " //&end" expressions for
the HAnS tool [15].

Line annotation serves as the method of "//&begin" and " //&end" annotations but
to map a single specific line of code and can be replaced by them. The implemen-
tation of line annotation is defined as an "//&line" expression for the HAnS tool
[15]. In Figure 3.4, an example shows both block and line annotations; the [Food]
feature is mapped to the block enclosed by the "//&begin" and "//&end" mark-
ers, and the [Spawn] feature is mapped to the code line by the &line where it is
located.

Both line and block annotation may have a similar expression explicitly defined for
practical use. In practice, the code annotation of any source code fragments or lines
may consist of several code lines or just a single line of code. Even in the case of
a class or method, only the code fragment or code line annotated belongs to this
identifier [34].

2.4 Logger Tool 13

2.4 Logger Tool

The Logger tool is an extension of the HAnS plugin for IntelliJ IDEA, which is
named "annotationLogger". It was developed to measure the time taken to write
embedded feature annotations using the HAnS tool within the IntelliJ Integrated
Development Environment (IDE) [33].

The logging process is implemented by recording timestamps in a JavaScript Object
Notation (JSON) file. This file contains all the recorded items. Whenever an action
is performed within the software project, it is recorded in the JSON file. The JSON
file consists of an array containing all logged annotations of each type and the
computation time spent on all annotation types, as shown in the example in Figure
2.5 below.

Figure 2.5: Example of a Logger tool JSON log file.

This includes annotations such as ".feature-to-file", ".feature-to-folder", ".feature-
model", "&block", "&line", and annotation deletions. The total time spent on an-
notations and the total duration of development sessions are also included. The
Logger tool tracks the time spent on each annotation by recording the timestamps
of the first and last character changes within the annotation. If no further changes
are made to the same annotation within a ten-second window, the logger marks the
annotation as complete. The Logger calculates the time between the first and last
changes to determine the duration [33].

All timestamps and durations are meticulously recorded in milliseconds to ensure
precise measurement accuracy. The development sessions were implemented to com-
pare the time spent annotating features with the total development time, including

14 2 Background

coding time. These sessions begin when a software project is opened in the IntelliJ
IDE and end when the IntelliJ IDE is closed. The duration of an active session is
recorded and logged when it ends. If the user is inactive for 30 seconds, the session
is inactive for the duration of the inactivity period until session activity is resumed.
Inactivity is defined as the absence of mouse movement or keystrokes within the In-
telliJ environment. This functionality is implemented in the code through listeners
that detect events such as keystrokes or mouse movements within the IntelliJ and
update the user activity accordingly [33].

2.5 The JetBrains IntelliJ IDE Support Platform

The IntelliJ platform offers several features that benefit researchers and developers
involved in tool development and implementation. This platform is not a stan-
dalone software, which serves as a means of developing integrated development en-
vironments (IDEs) [37]. Other companies like Google can use it for their IDEs
because it is open source and runs JetBrains products. This platform equips these
IDEs with the necessary robust language development support infrastructure. It’s a
component-based, cross-platform application environment based on the JVM (Java
Virtual Machine). It has an easy-to-use toolkit for building various interface ele-
ments like tree views, tool windows, lists (with a quick search), pop-up menus, and
dialogues. It also includes a full-text editor with features like syntax highlighting,
code folding, code completion, and text editing features, as well as an integrated
image editor [37]. Open APIs are used to build on standard IDE features such
as project models and build systems that the IntelliJ Platform also provides. It
also offers an infrastructure for efficient debugging, supporting advanced features
like breakpoints, call stacks, and expression evaluation independent of programming
languages. The essential strength of the IntelliJ Platform is based on the Program
Structure Interface, a set of functions used to analyze files, create rich syntactic and
semantic code models, and generate indexes. PSI enables various functionalities,
from fast navigation to code completions, searches, inspections, and refactoring. The
platform includes parsers and a PSI model for many languages, and its extensible
nature allows support for additional languages to be added. JetBrains is a market
leader that offers software development tools [37].

Dedicated Integrated Development Environments (IDEs) are available not only for
Java programming and various Plugins but also offer broad support for many lan-
guages, such as C, HTML, PHP, SQL, Kotlin, and JavaScript. JetBrains IDEs like
IntelliJ IDEA, WebStorm, and PyCharm are based on it, as well as external IDEs
like Android Studio and Comma IDE for Raku [16]. This IDE is based on the
IntelliJ platform, which extensively reuses features across languages. Developers
can save time implementing their concepts through the platform’s powerful code-
processing capabilities. The IntelliJ platform simplifies the process of developing
IDE plugins. Platform-specific APIs allow plugin developers to handle code and

2.6 Feature-Oriented Software Development and Evolution 15

artifacts seamlessly. Plugins can be easily published to the marketplace after devel-
opment, providing access to millions of IDE users and encouraging the evaluation
of ideas. The IntelliJ Platform is open source under the Apache License and hosted
on GitHub. While it’s often called a standalone entity, there’s no separate "IntelliJ
Platform" repository.

Products built on the IntelliJ platform are plug-in applications, where the platform
manages the creation of extensions [16]. It effectively supports plug-ins that are
distributed through the JetBrains marketplace or custom repositories, which can
serve the platform in numerous ways, from simple menu items to full language
support. Creating actions for a plugin is also supported and can be used to perform
specific tasks in IntelliJ.

HAnS uses 15 different extension points where it can add additional functionality
and includes five new actions [15, 22]. Many of these extensions, such as "filetype"
and "parser definition", have been used multiple times to set up how annotation
languages work. Other extensions are used to add a new tab view via the "tool-
Window" extension and feature name validation via the "renameInputValidator"
extension. These new actions are also used for different purposes, like renaming,
adding, or deleting features. Some actions create new annotation files, and others
map annotations around a block of code.

2.6 Feature-Oriented Software Development and
Evolution

Feature-Oriented Software Development (FOSD) is a paradigm that employs the
concept of features to manage commonality and variability throughout the soft-
ware development life cycle. This approach emphasizes the systematic use of fea-
tures at each of the various stages, from initial analysis to final implementation,
thereby facilitating the reuse and structuring of software systems based on these
features [4]. Feature-Oriented Software Development (FOSD) is an approach to
software development that emphasizes the identification, analysis, and implementa-
tion of significant or noticeable aspects, qualities, or attributes of a software system
[18].

The concept of Feature-Oriented Software Development (FOSD) is complex due to
its broad scope. However, an earlier definition provides clarity. In the article "An
Overview of Feature-Oriented Software Development", Sven Apel and colleagues
define FOSD as follows:

“The concept of a feature is useful for the description of common-
alities and variabilities in the analysis, design, and implementa-
tion of software systems. FOSD is a paradigm that favors the
systematic application of the feature concept in all phases of the

16 2 Background

software life cycle. Features are used as first-class entities to an-
alyze, design, implement, customize, debug, or evolve a software
system. That is, features not only emerge from the structure and
behavior of a software system, e.g., in the form of the software’s
observable behavior, but are also used explicitly and systematically
to define variabilities and commonalities, to facilitate reuse, and
to structure software along these variabilities and commonalities.
A distinguishing property of FOSD is that it aims at a clean (ide-
ally one-to-one) mapping between the representations of features
across all phases of the software life cycle. That is, features spec-
ified during the analysis phase can be traced through design and
implementation.” [4]

This definition emphasizes the pivotal role of features in FOSD, influencing various
stages of the software development process. By prioritizing features, developers can
explicitly and systematically address the variabilities and commonalities within the
software, thereby enhancing reuse and maintaining a consistent structural frame-
work. A notable feature of FOSD is achieving a seamless mapping of features from
the analysis phase to design and implementation, ensuring traceability and coherence
[4].

Also, in the same article, Sven Apel [4] describes that the Feature-Oriented Soft-
ware Development (FOSD) process consists of four phases: Domain Analysis, Design
and Specification, Implementation, and Configuration/Generation. During domain
analysis, developers identify relevant features and their support status. Design and
Specification involve the creation of detailed plans for consistent feature implemen-
tation. Implementation translates the specified features into software components.
Finally, Configuration/Generation assembles the software based on the specified fea-
tures, allowing for customization. FOSD maintains a clear mapping of features from
analysis to implementation, ensuring software consistency, customization, and evo-
lution. This systematic approach improves software management and makes FOSD
valuable in modern software engineering.

In their publication [38], Thomas Thüm et al. discusses how FOSD is utilized to
originate and implement Software Product Lines (SPLs) in the engineering domain
and to create specific application programs. FOSD involves producing functional
software through several sequential phases: analysis, implementation, requirements
analysis, and software generation. Various methodologies exist for implementing
SPLs within the FOSD framework, primarily aimed at establishing a link between
features and source code to automate the generation of software systems based on
a given configuration. These methodologies are diverse but generally rely on a spe-
cific programming language known as the host language, such as Java or C++.
Feature-Oriented Programming (FOP), as proposed by Prehofer [27], represents a
significant advancement in object-oriented programming. This approach involves
dividing classes into feature modules, each representing a distinct feature. These

2.6 Feature-Oriented Software Development and Evolution 17

feature modules may include methods and fields from multiple classes and can be
combined into a program based on a defined configuration and sequence of fea-
tures.

Software systems constantly change to keep up with new needs, technologies, and
regulations. This evolution is influenced by different factors such as laws, market
trends, and technological advancements [12]. According to Leonardo Passos et al.
[25], this evolution is especially tricky for extensive systems due to the variety of
involved artifacts and the breadth of expertise required. For example, adding a
new feature to existing systems involves changes to multiple items and requires
the knowledge of different experts. This complexity can lead to problems such as
communication difficulties, software bugs, architectural degradation, and increased
maintenance costs.

A way to deal with these challenges is to manage change at the feature level. Features
are groups of requirements that define important parts of the system. They are also
useful for building software product lines (SPLs), which are collections of similar
software systems [7]. Sven Apel et al. [4] describe the idea that the features can
be used to find out which parts of the system are the same across different versions
and which parts can change, making it easier to control how the system is put
together and how it changes over time. Incorporating feature-oriented development
into existing ways of working shows that dealing with the tricky parts of software
evolution is practical.

3 Methodology

In this chapter, we outline the methodology used to investigate the research questions
outlined in Section (3.2). The methodology encompasses the experimental setup,
data collection procedures, and analysis techniques used to address each research
question systematically.

3.1 Experimental Design

This study uses a single-subject design [10], in which all participants experience
the same conditions and tasks, allowing for direct comparisons within the same
group. This design reduces variability between individuals, thereby increasing the
study’s statistical power. It was chosen because it is suitable for assessing the
impact of the HAnS tool on feature annotation tasks. In this experimental study,
the independent variable is the HAnS tool used to document feature annotations
in a single experimental group. The dependent variables include the accuracy of
the Logger tool in capturing embedded feature annotations, the effort (in terms of
time) taken to complete annotation tasks, and the usability ratings of the HAnS
tool. This experiment aims to evaluate the accuracy of the Logger tool in recording
feature annotations. For this purpose, participants were instructed to perform these
tasks using the HAnS tool, which integrates the Logger tool, for writing embedded
feature annotations. Finally, the time invested in navigating and annotating these
features was measured during the development process. The single-subject design
also aids in evaluating the Logger tool by comparing it to video recordings of the
participants’ tasks. This helps to ensure that any differences observed are due to
the functionalities of the tools rather than individual differences among participants.
An overview of the experiment is shown in Figure 3.1.

20 3 Methodology

Figure 3.1: Overview of the experiment.

3.2 Research Questions

To guide our research, we will investigate the following research questions:

RQ1: How accurate is the Logger tool for recording embedded feature annota-
tions?

This question aims to evaluate the accuracy and dependability of the Logger tool in
accurately capturing and logging feature annotations within the codebase through the
utilization of the HAnS tool.

RQ2: What is the effort (in terms of time) of using embedded feature traceability
annotations during development?

This question measures the time it took to write embedded feature annotations during
the development process.

• RQ2.1: What is the effort of recording annotations?
This sub-question determines developer time spent initially on writing feature
annotations during development.

• RQ2.2: What is the effort of editing and removing annotations?
This sub-question examines the effort required to change or remove existing
annotations based on manual observations of captured videos.

3.3 Experimental Setup 21

RQ3: How is the annotation process perceived by developers?

This question aims to gather qualitative data on how developers feel about and per-
ceive the annotation process. Specifically, the aim is to understand the circumstances
under which developers decide to add annotations to their work.

RQ4: How is the IDE-based tool support perceived by developers? (HAnS-specific)

This question examines the overall perception of the HAnS tool within the IDE across
several aspects.

• RQ4.1: Difficulty ratings
In this sub-question, developers’ difficulty in using the HAnS tool is to be as-
sessed.

• RQ4.2: Usability (efficiency, satisfaction)
This sub-question explores the usability of the HAnS tool, focusing on efficiency
and overall user satisfaction.

• RQ4.3: Usefulness
This sub-question determines how developers find the tool useful in their work-
flow and code navigation.

• RQ4.4: Technical issues
In this sub-question, document any technical issues or bugs developers may en-
counter while using the tool.

• RQ4.5: Suggestions for improvement.
This sub-question collects developer recommendations for tool improvements
based on their experience.

RQ5: How does the developers’ experience and understanding of the annotation
paradigm align with their mental model after being introduced to the concept?

This question examines the degree to which developers’ expectations match their expe-
rience using the embedded feature annotations and their ability to adapt to the feature
annotation paradigm introduced by the HAnS tool.

The formulated research questions will serve as a structure for the study, allowing us
to investigate the accuracy, efficiency, perception, and usability of the HAnS tool and
embedded feature annotations during software development.

3.3 Experimental Setup

The experimental setup encompassed several materials uploaded to the public GitHub
repository named "hasanainq/HAnS-experiment-" [1]. In this section, we will explain

22 3 Methodology

the essential materials used for the experiment, including "Subject Systems Introduc-
tion", "Tasks Design", "HAnS Tutorial Introduction", and "Installation Guidelines for
the HAnS Plugin and Logger Tool".

3.3.1 Subject System Introduction

DART (viDeo gAme and song RenTal System): DART is software for a
video game and music rental system. The company has previously been using old
paper and pen to record the data about games, personnel, transactions, etc. With
items being added to the system every day and the number of customers increas-
ing, the company decides to digitalize its system by creating a simple Java-based
console application. As a result, they created a software system called "DART ”
and distributed it to various franchise stores. DART can be used by three different
types of users: Managers, Employees, and Customers. Managers are responsible for
high-level tasks, such as adding, editing, and removing employees. Employees are
responsible for registering customers, upgrading or downgrading customer member-
ships, adding items to the inventory, etc. Both managers and employees can view
different statistics to monitor the sales in their respective stores, for example, the
most profitable item, rental frequency of each item, best-reviewed item, etc. The
system permits users to engage with it in various ways. They can rent video games
and songs. They can also interact with one another and provide feedback on the
items they have rented. The system specifications, which include a combination
of feature descriptions and a feature model, give participants a list of feature de-
scriptions and pointers to the source code where the features are implemented. For
additional clarification, we direct your attention to the appendix in the DARTPlus
Subject System Features document, which provides a comprehensive overview of the
system’s features.

The DARTPlus project was developed using the Java programming language. Figure
3.2 illustrates the feature model and enumerates the specific features included in
DARTPlus. The total code base of the DARTPlus project consists of approximately
1500 lines of code, encompassing 18 different features.

3.3 Experimental Setup 23

Figure 3.2: Feature model of the DARTPlus subject system.

3.3.2 Tasks Design

The tasks were designed to simulate real-world scenarios and were assigned to par-
ticipants in a single experimental group. The intention was to permit participants to
implement specific feature annotations, including writing a simple code and cloning
from other parts of the source code. Additionally, they were required to perform
maintenance tasks, such as refactoring, to observe the effects. Participants were re-
quired to complete some development tasks that involved writing embedded feature
annotations, thereby recording their screens during the experiment. The Appendix
Section (A) of the "Scenarios-Tasks" document provides more details regarding each
task within the scenarios, as well as including the "dartData.txt" file. The tasks of
the scenarios constituted of the following three parts:

• Warm-up task:
The objective of this task is to familiarize the participants with the process of
adding feature annotations using the HAnS tool. This will involve the following:

1. Add a new feature mapping named "feature-to-folder".

2. Add a new feature mapping named "feature-to-file".

3. Navigate all the usages of a feature using the feature model.

4. Adding a "feature-to-code" mapping via begin and end annotation for the
feature annotation.

24 3 Methodology

• Implementing ImportData feature task:
The objective of this task is to add a new feature to the DARTPlus system,
specifically implementing the ImportData functionality. This feature will en-
able the system to read data from the "dartData.txt" text file containing in-
formation about employees, songs, games, and customers. The data will then
be registered accordingly. Employees and customers have dedicated array lists
(employees and customers), whereas rentable items (songs and games) can be
added to the same array list (i.e., items).

For file reading, the following code was provided as a help reference:

1 public void readFile(ArrayList<Employee> employees,
ArrayList<Customer> customers, ArrayList<Rentable> items, Scanner
input){

→˓

→˓

2 try {
3 File dartData = new File("dartData.txt");
4 FileReader fr = new FileReader(dartData);
5 BufferedReader br = new BufferedReader(fr);
6 String line;
7 while((line = br.readLine()) != null) {
8 String[] dartInfo = line.split(";"); // parse data
9 //register employees, songs, and games based on the first

word of the line (employee, game, song)→˓

10 //For registering, use methods this.registerEmployee(),
items.add(new Game or Song), and customers.add()→˓

11 }
12 } catch (Exception var12) {
13 System.out.println("File does not exist");
14 }
15 }

• Allow customers to rent movies by cloning the rental class task:
The objective of this task is to clone the class Song () to create a new class,
Movie, within the DARTPlus system. This new class, Movie, should be cre-
ated with a "feature-to-file" mapping for the RentItem class, which should be
implemented in the Movie.java file.

Subsequently, participants were required to annotate the implemented code with
embedded feature annotations after each scenario. Moreover, after completing each
scenario of the tasks, they were provided with an explanation of the expected out-
comes, which helped them ensure that the required tasks had been completed and
that the results had been understood.

3.3 Experimental Setup 25

3.3.3 HAnS Tutorial Introduction

As part of the experimental procedure, each participant was presented with a Pow-
erPoint slideshow that provided an overview of the HAnS tool. The "HAnS Tutorial
Introduction" file is provided in the Appendix Section (A). The slides offer guid-
ance on how developers can utilize embedded feature annotations directly within
their code assets, such as files, folders, code fragments, individual lines of code, and
navigating feature models. Furthermore, the slides offer a detailed explanation of
the types of embedded annotations supported by the HAnS tool, illustrated with
screenshots and tutorials. Some illustrations are shown in Figures 3.3, 3.4, and 3.5
below.

Figure 3.3: Embedded feature annotations.

26 3 Methodology

Figure 3.4: Adding a feature-to-code mapping.

Figure 3.5: Navigating feature models.

3.4 Participants 27

3.3.4 HAnS and Logger Tools Setup Guidelines

The document "Installation Guidelines for the HAnS Tool" contains detailed in-
structions for installing the HAnS (Helping Annotate Software) tool. It explains
how developers can set up the HAnS and Logger plugins within the Integrated
Development Environment (IDE). In the case of a manual installation, develop-
ers needed to access Settings/Preferences > Plugins > Install plugin from disk...
[1].

The "HAnS annotationLogger Guidelines" document delineates the essential steps
for configuring the Logger tool, which were instrumental in data collection [1]. This
process automatically generates a JSON file for data logging, where each feature
annotation using the HAnS tool is recorded in a JSON file. Once the IDE has been
closed, the logging stops automatically, and the logged JSON file, identified by the
name "annotationLogger", is saved to a specified local directory [33]. For further
details on the HAnS and the Logger Tools setup guidelines, refer to Appendix (A).
Experiment Materials, the "Installation Guidelines for the HAnS Plugin and Logger
Tool".

3.4 Participants

3.4.1 Participant Selection Criteria

For the recruitment of participants in this experiment, an approach was chosen
based on personal networks, academic staff in the software engineering chair, and
WhatsApp groups, with a focus on students as the main target group. This method
aimed to attract a diverse and heterogeneous group of participants in order to cap-
ture a broad spectrum of user experiences with feature documentation techniques
and programming. The programming knowledge criterion for participation in the
experiment was a lack of any previous experience with feature annotations using
the HAnS tool. This criterion guarantees the impartiality of all participants’ eval-
uations and assessments conducted during the user study of using the HAnS tool
for writing embedded feature annotations. This targeted selection is intended to
collect authentic and representative data that provides a clear picture of user accep-
tance and experience with Embedded Feature Annotations and the usability HAnS
tool.

3.4.2 Recruitment Process

The study aimes to recruit approximately 10–15 participants from various disci-
plines, including scientific researchers, practitioners, software developers, and stu-
dents at the PhD, MSc, and BSc levels. The participants were required to complete

28 3 Methodology

a questionnaire and engage in tasks related to developing and annotating embedded
features using the HAnS tool, as well as responding to the posed questions. Ad-
ditionally, the participants were asked to answer some experience questions in the
questionnaire to provide qualitative data. The collected data helps to gain insights
into the participants’ experiences.

3.5 Procedure of the Experimental Study

3.5.1 Preparation Phase

At the study’s outset, the experimental setup included several components de-
signed to introduce the experiment materials to the participants in the experimen-
tal group. These components were uploaded to a public GitHub repository named
"hasanainq/HAnS-experiment-" [1], which also contains supplementary materials, in
addition to those presented in the Appendix Section (A).

This introductory phase was crucial for creating a solid understanding of imple-
menting the feature annotation methods using the HAnS tool, which was to be
investigated, and for preparing the participants for the experimental setup pro-
cesses. The "Subject Systems Introduction" and "HAnS Tutorial Introduction" doc-
uments were provided to the participants to review, allowing them to familiarize
themselves with the DartPuls subject system and the HAnS tool. In addition, par-
ticipants were instructed to clone and open the "DartPuls" project folder in the
IntelliJ IDE. Additionally, they were provided with the "HAnS-0.0.4.zip" file, which
contained the integrated logger tool to be set up in the IntelliJ IDE. The main
repository also includes guidelines for installing HAnS and Logger tool configura-
tions [1].

Finally, participants were given the "Scenario - Tasks" for performing the assigned
tasks in different scenarios and the "dartData.txt" file document, which was utilized
in the tasks. Further details can be found in the "(A). Experiment Materials" Section
of the Appendix.

3.5.2 Pilot Study

Before beginning the implementation phase of the experiment, a pilot study was
conducted to test and refine the experimental setup and procedures. We endeavored
in the pilot study to ensure the clarity of the questionnaire and the preparation
steps. These steps consisted of installing the IntelliJ IDE, setting up plug-ins and
using the HAnS (including the Logger), identifying and resolving complications, and
recording the time spent conducting the pilot study. Two participants, selected from
undergraduate and graduate computer science students, were assigned to complete

3.6 Data Collection 29

the same tasks designed for the main experiment. After completing the tasks, the
participants provided feedback on the clarity of the instructions, the usability of the
tools, and any challenges they encountered. They were also encouraged to suggest
potential improvements and refinements to the experimental process. The data
obtained from the pilot study, including screencast recordings and timestamps from
the Logger tool, were carefully extracted and reviewed to ensure the data collection
process’s accuracy, correctness, and comprehensiveness.

The pilot study outcomes assisted us in refining and solving issues that could arise
in the main experiment. For instance, based on the feedback and observations,
we could enhance the clarity of task instructions by redesigning each scenario of
the tasks and the HAnS tutorial introduction to use the embedded annotations
refined procedures in the main experimental study. Additionally, measuring the
experiment’s duration helped us to determine the required time for the participants
to complete the experiment.

3.5.3 Execution Phase

The execution of the experiment focused first on setting up the HAnS tool, includ-
ing the Logger tool, within the suitable version of the IntelliJ IDE. Each participant
was required to download the GitHub repository containing all the experiment doc-
uments [1]. The participants were given an introduction tutorial to the HAnS tool
and familiarization handouts regarding the subject system. This process was cru-
cial to avoid possible learning effects or biases that the results could have been
influenced to minimize. Immediately after finishing the setup process on each lap-
top system, participants were asked to fill out a standardized questionnaire. The
questionnaire was designed to record the participants’ immediate impressions and
evaluations of the user-friendliness of writing embedded feature annotations using
the HAnS tool. Next, in the crucial part of the experimental study, participants
conducted an experiment where they recorded all their screens while performing an-
notation tasks during development. Each participant was then asked to upload both
files for screen recording and log files for data collecting and analysis purposes. This
approach provided qualitative data and deeper insights into their personal experi-
ences. Integrating quantitative and qualitative data collection techniques offered a
comprehensive basis for the user study of using the HAnS tool for writing embedded
feature annotations.

3.6 Data Collection

This section outlines the data collection methods and tools employed in the ex-
perimental study, including questionnaires, observations, and participant feedback
regarding feature documentation during the experiment.

30 3 Methodology

3.6.1 Quantitative Data

Logger Tool: A review of the Logger tool’s source code reveals that the start and
stop logging functions are integrated within the tool. The annotation functions are
designed to be executed via keystrokes, and they are also tracked and added to the
total annotations when the user highlights text with the mouse. The listeners are
responsible for logging various events, such as text highlighting and right-clicking for
both line and block annotations. Subsequently, these events are then implemented
to calculate the time taken by the user to highlight text and right-click on "Surround
with Feature Annotation" for (line []) or (begin [] end []) annotations. This func-
tionality enables the annotations to be created instantly. Subsequent changes to the
annotation, such as deletions, are also recorded. However, these changes were not
included in the total annotation time. The Logger tool records and calculates the an-
notations when the text begins with the specified syntax.

Below are some lines from the Logger tool’s source code:

1 private static final String LINE_ANNOTATION = "// &l";
2 private static final String END_ANNOTATION = "// &e";
3 private static final String BEGIN_ANNOTATION = "// &b";

Moreover, when the deleted text matches a specific pattern of annotations, such as
"line" and "being or end," then the time of deletion is calculated and stored in the "an-
notationLogger" file. These logging times are then also stored in the JSON file. The
following lines of code present the process of determining whether the deleted text
matches the annotation pattern, including the potential for spaces:

1 Pattern pattern = Pattern.compile("^\\s*//\\s*&(.+?)\\[");
2 Matcher matcher = pattern.matcher(deletedText);

To summarize the Logger tool workflow, it records the times of keypresses and mouse
clicks. Should these events lead to an annotation, the required time to complete it
will be calculated by subtracting the times for the first keypress from the time of the
last for that annotation. Besides, there is an implementation for recording the time
of "quick annotations." This will be logged when the user starts code highlighting and
right-clicks on "Surround with Feature Annotations".

The Logger tool was employed to automatically record timestamps while writing an-
notation tasks within the IntelliJ IDE. These timestamps were logged into log files in
the JSON format while completing the tasks during the experiment.

Screen Recordings: During the experiment, participants’ screens were recorded
while they completed development tasks and implemented embedded feature anno-
tation tasks. These recorded videos captured the entire process within the IntelliJ

3.6 Data Collection 31

IDE, including the time taken to complete each task. The time durations were man-
ually extracted from the videos using Clipchamp Microsoft software. The extracted
timestamps for the required tasks related to embedded feature annotations were
then utilized.

Clipchamp is a Microsoft software video editor suitable for creating YouTube videos,
slideshow videos, and other content. Its user-friendly interface is ideal for students
lacking experience in video editing [8]. For the experiment, the free version of
Clipchamp was used to manually measure the precise durations of the screencast
series recorded during the completion of experiment tasks. Clipchamp allows trac-
ing the video duration in a format of "MM: ss. ms/ HH:mm.ss", which is the
equivalent of "minutes: seconds. milliseconds/hours: minutes. seconds". This
is consistent with the development design time unit in milliseconds of the Logger
tool.

Although these screen recordings were primarily used to gather the actual times
required to perform a task, they also generated insights that proved helpful for our
qualitative analysis.

Questionnaire: The online Google form was used to administer the questionnaire
to the participants. This form facilitated the collection of quantitative and qualita-
tive data regarding participant demographics, technical background, perceived diffi-
culty of tasks, and opinions on embedded feature traceability annotations. Closed-
ended questions were used to collect responses regarding participant demographics
and technical background, programming expertise, and the rating of their knowl-
edge in feature annotations. A series of Likert scale questions were included to gain
insight into the perceived difficulty of the tasks, opinions on embedded feature trace-
ability annotations, and experience and benefits. The types of questions are listed
as follows:

• Demographic and Technical Background Questions: The demographic
questions were used to gather fundamental participant data. This questionnaire
records technical background information, such as the participant’s level of ed-
ucation, experience with programming, and knowledge of feature annotations.
The demographic and technical background data is crucial to characterizing the
study population, identifying possible demographic influences, and identifying
factors affecting user experience. It also allows for assessing familiarity with
feature location tasks and proficiency in programming languages.

• Likert Scale Questions: The Likert scale was utilized to assess perceptions
of the HAnS tool, the difficulty of annotation tasks, questions regarding the
embedded feature traceability annotations, and experience and benefits.

• Open-Ended Questions: These Provided crucial detailed feedback regarding
embedded feature annotations, the difficulty of adding annotations, their own
experiences in this regard, and suggestions for improvement.

32 3 Methodology

Structure: The structure was designed first with a Pre-Task Questionnaire to
collect basic information about the participant’s demographic and technical back-
grounds. Second, a Post-Task Questionnaire was used to gain insight into the partic-
ipants’ experiences regarding the annotation tasks and their feedback on the HAnS
tool. Finally, a follow-up questionnaire was included as an optional open-ended ques-
tion for further elaboration regarding the HAnS tool, embedded feature annotations,
and overall experience.

Data Collection Process: The participants received a Google form link via Skype,
email, or WhatsApp. To ensure anonymity and confidentiality, anonymized re-
sponses and reporting of only aggregated data were performed.

3.6.2 Qualitative Data

Open-Ended Questionnaire Responses:

In the post-task questionnaires, participants were also asked open-ended questions
to provide additional insights about the difficulty of adding feature annotations,
detailed feedback on their experience with the HAnS tool, and suggestions for im-
provement.

3.7 Data Analysis

The methodology of this study involved a detailed analysis of data collected from
a user study experiment using the HAnS and Logger tools, along with tasks and
a questionnaire administered to participants, including students and academic re-
searchers. The aim was to gather both quantitative and qualitative data for com-
prehensive analysis. Quantitative data were collected through screen recordings,
capturing participants’ screens while they performed feature annotation tasks using
the HAnS tool and through the annotation logger, which tracked the time and effort
participants spent on writing embedded feature annotations. Additionally, empirical
evidence was collected as participants performed the tasks, with their interactions
being logged for subsequent analysis.

Qualitative data were gathered via a questionnaire containing open-ended questions,
which participants answered after completing the tasks. This provided insights into
their experiences and opinions regarding the usability of the tools and the annotation
process. The data analysis process began with examining the screen recordings and
Logger tool data to measure the effort spent on writing annotations and assess
the Logger tool’s accuracy. Timestamps were manually extracted from the screen
recordings and compared with those in the log files generated by the Logger tool,
aiming to verify its accuracy. The time required for writing feature annotations and

3.7 Data Analysis 33

navigating within the IntelliJ IDE was measured, and these times were organized
into tables and Excel spreadsheets for further analysis.

Statistical analysis was conducted to interpret the data. The Shapiro-Wilk test [29,
13] was employed to assess the normality of the data collected from the logger files
and manual screen recordings for each feature annotation task.

This test is crucial for determining between a non-normal and a normal distribu-
tion:

Normal Distribution: If the output data from both methods are normally dis-
tributed (p-values > 0.05), parametric tests like the paired t-test will be used to
compare the means.

Non-Normal Distribution: Non-parametric tests such as the Wilcoxon signed-
rank test will be used if the data is not normally distributed (p-values < 0.05).

In all cases where there was a disparity in normality between the two sets of data,
as determined by comparing the p-values, indicating one as normal distributed and
the other as non-normal distributed, the null hypothesis was rejected. This sug-
gests that the data were non-normal. Therefore, the non-parametric tests, such
as the Wilcoxon signed-rank test [9, 41], were the most suitable for this situa-
tion.

In the Wilcoxon signed-rank test, the obtained p-value is typically compared to a
set significance level, which is often referred to as alpha (𝛼). This is commonly set
to 0.05.

1. Significant Difference: If the p-value is ≤ 0.05, it indicates a statistically
significant difference between the paired observations.

2. No Significant Difference: If the p-value is > 0.05, it indicates no statistically
significant difference between the paired observations.

The Wilcoxon signed-rank test was applied to assess the significance of differences
between the various annotation types, including feature model, file annotation, folder
annotation, block annotation, line annotation, and total annotation. The p-values
were compared to 0.05 to evaluate significance.

The accuracy of the Logger tool was evaluated by comparing the recorded annotation
times in the log files with the corresponding times in the screencasts. The percentage
of time spent on annotations compared to the total development time was calculated
using the equation:

Percentage of total spent time in Logger tool = Total annotation time (ms)
Total developing time (ms) ×100

Each participant’s data was presented using the percentage equation to demon-
strate the time Logger spent on annotations relative to the total development ses-
sion.

34 3 Methodology

To ensure data uniformity in this study, the Logger tool’s unit of time, expressed in
milliseconds, is used. The time taken for annotations recorded by the Logger tool
was manually compared with the time recorded in videos, and the Wilcoxon test
was applied to determine if there was a significant difference between the various
annotation types and the time measurements. P-values were compared to 0.05 to
evaluate the statistical significance of the results.

3.8 Limitations and Challenges

Only 13 participants were identified in this study, which represents a relatively small
sample size and may potentially influence the statistical power of the empirical study.
However, the participants were primarily students with programming experience,
which adds value to the work and increases the relevance of their contributions.
Because of these issues, our findings may not generalize well to a larger population.
To address these limitations, we have reported effect sizes and confidence intervals
to provide a clearer picture of the results. We applied robust statistical techniques
to improve the reliability of our estimates. We acknowledge that further research
with larger sample sizes is needed to confirm and extend our findings. We also faced
challenges in finding and preparing an appropriate experimental subject system.
After investing time in developing the subject system for library management and
explaining its features in Software Product Line Engineering (SPLE), including the
code, we encountered new bugs in connecting the database using the HAnS tool
in the IntelliJ IDE. This problem forced us to change the system before conducting
the experiment. Despite these limitations and challenges, this controlled experiment
provides valuable insights into using embedded feature annotations with the HAnS
tool for documenting feature locations in code.

4 Results

In this chapter, we present the results of our experimental study, organized ac-
cording to our research questions outlined in Section (3.2) and the questionnaire.
Each research question has a subsection presenting our experiment’s relevant re-
sults.

4.1 RQ1: Accuracy

To address RQ1 (How accurate is the Logger tool for recording embedded feature
annotations?), the data extracted from the Logger tool and videos were analyzed
using a statistical test in the R language and Microsoft Excel sheets. Differences
between the Logger tool and the videos of normally distributed populations were
assessed by analysis of the Shapiro-Wilk test. Based on the normality of the data,
the differences between paired observations were then assessed by implementing
the Wilcoxon signed-rank test. The results of the analysis were conducted using
statistical test techniques. In this section, we present the most interesting results
and the most important implemented methods.

Statistical Testing Methods:

The following table presents the results of the Shapiro-Wilk normality test for each
annotation type. It indicates whether the data from logger files or manual screens
is classified as normal or non-normal distribution.

Table 4.1 below provides a clear overview of the normalization status of the data
collected from log files and manual recording videos for each annotation type. It
shows that the null hypothesis of normality was rejected since the outputs were one
as normal distributed and the other as non-normal distributed or both as non-normal
distributed.

36 4 Results

Annotation
Type

Logger Data
(p-value)

Manual Screen
Data (p-value)

Normality

Feature Model 0.1461 0.01233 One non-normal

File
Annotation

0.003246 0.07582 One non-normal

Folder
Annotation

0.0003657 0.0001185 Both non-normal

Block
Annotation

0.0004415 0.058 One non-normal

Line
Annotation

0.001456 0.05913 One non-normal

Total
Annotation

0.0007183 0.5512 One non-normal

Table 4.1: Output results of the Shapiro-Wilk test.

Based on the Shapiro-Wilk test in output table 4.1, we conclude that the data are
non-normally distributed.

Annotation
Type

Logger Data
Normality

Video Manual
Data Normality

Recommended
Test

Feature Model Normal Non-Normal Wilcoxon
Signed-Rank Test

File
Annotation

Non-Normal Non-Normal Wilcoxon
Signed-Rank Test

Folder
Annotation

Non-Normal Non-Normal Wilcoxon
Signed-Rank Test

Block
Annotation

Non-Normal Normal Wilcoxon
Signed-Rank Test

Line
Annotation

Non-Normal Normal Wilcoxon
Signed-Rank Test

Total
Annotation

Non-Normal Normal Wilcoxon
Signed-Rank Test

Table 4.2: Statistical test selection.

Table 4.2 indicates that the data are non-normal for either the logger or video
manual data. Therefore, the recommended statistical test is the Wilcoxon Signed
Rank Test.

4.1 RQ1: Accuracy 37

In the Wilcoxon signed rank test, a p-value is typically compared to a significance
level (often referred to as 𝛼). This level is usually set at 0.05. If a p-value is equal
to or less than this level, it indicates a significant difference between the paired
observations.

Feature
Model

File
Annotations

Folder
Annotations

Block
Annotations

Line
Annotations

Total
Annotations

Ps Logger
tool

Videos Logger
tool

Videos Logger
tool

Videos Logger
tool

Videos Logger
tool

Videos Logger
tool

Videos

P1 5101 7000 21148 20000 - 1500 18762 14000 3771 4000 46161 46500

P2 19656 20000 28005 27000 894 800 17995 18000 8837 10000 75387 75800

P3 49036 54000 53093 48000 579 800 20271 25000 - 14000 102708 102800

P4 11234 11000 29517 25500 503 900 75375 54000 20782 21000 132678 112400

P5 15350 13000 36894 38000 1526 2000 30786 22000 - - 81510 75000

P6 25803 27000 73186 66500 358 800 12370 10000 - 4000 110945 108300

P7 16017 16000 15272 16300 21869 22500 10662 8500 - - 63820 63300

P8 8845 18000 32468 33000 546 700 18869 16300 - - 58522 61000

P9 14184 11000 108149 50000 6358 5500 125518 59000 - - 254209 132500

P10 - - 31347 29500 6326 4500 31702 32500 - 13800 69375 80300

P11 24069 23000 21807 21200 2756 2200 31412 26500 6314 5000 77796 77900

P12 25263 13000 15321 16250 11128 11000 16192 14500 20829 23900 85826 78650

P13 13672 13400 17965 18700 451 465 39007 34300 14995 15500 80401 82365

Table 4.3: Time comparison between Logger tool and videos for all 13 participants.

Table 4.3 summarizes the time taken by 13 participants to complete various types
of annotations using a logger tool and video recordings. The annotations include
feature model, file, folder, block, line annotations, and the total time required for
annotating. The comparison provides an overview of the logger tool’s efficiency
compared to video recordings. For a more detailed analysis of the accuracy of the
annotations, see Appendix Section (B). Times for validating the accuracy of the
Logger tool.

After presenting the findings of the initial evaluation, it is evident from Table 4.4
that, in many cases, there are no significant variances in the comparison between
the Logger tool and the manually recorded videos. Through the analysis of the line
annotations, it can be interpreted that the results are likely similar according to the
p-value = 0.058, which is close to the conventional significant level of a = 0.05. This
indicates that the tool is relatively accurate in the line annotations. However, notice-
able differences were observed in the block annotations.

38 4 Results

Annotation
Type

Logger vs.
Manual Videos
(p-value)

Interpretation

Feature Model 0.968 No significant difference:
Logger tool accurate

File
Annotation

0.094 No significant difference:
Logger tool accurate

Folder
Annotation

0.635 No significant difference:
Logger tool accurate

Block
Annotation

0.013 Significant difference:
Logger tool may be inaccurate

Line
Annotation

0.058 Potential difference: Logger tool is ap-
proximately accurate, and further in-
vestigation is needed

Total
Annotation

0.454 No significant difference,
except for block annotations

Table 4.4: Interpretation results for each annotation type.

According to the results of our experiment, the Logger tool is generally considered
accurate. However, in real-world scenarios, the cases are very different from how the
Logger tool works appropriately using the HAnS tool. Even though the Logger tool
shows a high degree of accuracy and effectiveness, Table 4.4 provides a summary for
interpreting the results for each annotation type.

4.2 RQ2: Effort

The user study experiment presents both qualitative observations and quantitative
results to address the research questions RQ2 (What is the effort (in terms of time)
of using embedded feature traceability annotations during development?), RQ2.1
(4.2.1 What is the effort of recording annotations?), and RQ2.2 (4.2.2 What is the
effort of editing and removing annotations?).

4.2.1 Effort of using embedded feature traceability annotations
during development and the effort of recording annotations

This research study evaluates the effort (in terms of time) required to use embedded
feature traceability annotations during development using the HAnS tool. Thirteen
participants were assigned the same tasks as detailed in Tasks Design (3.3.2) of
the Methodology chapter and were asked to complete the annotations for these
tasks throughout the development process. Some participants made errors in their

4.2 RQ2: Effort 39

annotations, which were then corrected by editing the annotations, resulting in
longer annotation times.

Table 4.5 illustrates that the mean time across all tasks was approximately 84370
ms, with notable variation among participants. These observations underscore the
importance of user training and familiarity with feature annotations, particularly the
HAnS tool, in order to minimize the effort (in terms of time) required for using em-
bedded feature traceability annotations during development.

Feature
Model

File
Annotations

Folder
Annotations

Block
Annotations

Line
Annotations

Total
Annotations

Ps Logger
tool

Videos Logger
tool

Videos Logger
tool

Videos Logger
tool

Videos Logger
tool

Videos Logger
tool

Videos

P1 5101 7000 21148 20000 - 1500 18762 14000 3771 4000 46161 46500

P2 19656 20000 28005 27000 894 800 17995 18000 8837 10000 75387 75800

P3 49036 54000 53093 48000 579 800 20271 25000 - 14000 102708 102800

P4 11234 11000 29517 25500 503 900 75375 54000 20782 21000 132678 112400

P5 15350 13000 36894 38000 1526 2000 30786 22000 - - 81510 75000

P6 25803 27000 73186 66500 358 800 12370 10000 - 4000 110945 108300

P7 16017 16000 15272 16300 21869 22500 10662 8500 - - 63820 63300

P8 8845 18000 32468 33000 546 700 18869 16300 - - 58522 61000

P9 14184 11000 108149 50000 6358 5500 125518 59000 - - 254209 132500

P10 - - 31347 29500 6326 4500 31702 32500 - 13800 69375 80300

P11 24069 23000 21807 21200 2756 2200 31412 26500 6314 5000 77796 77900

P12 25263 13000 15321 16250 11128 11000 16192 14500 20829 23900 85826 78650

P13 13672 13400 17965 18700 451 465 39007 34300 14995 15500 80401 82365

Mean 17556 17415 37244 31535 4100 4128 34532 25738 5810 8381 95334 84370

Std
Dev.

12173 12973 26780 15303 6298 6263 32102 15804 8083 8064 52902 23620

Table 4.5: Mean (average) and Std Dev. (standard deviation) for the Logger tool
and videos of the effort in terms of time for each participant.

It was also observed that the minimum total development time required to complete
the experiment was approximately 22 minutes for Participant 8, with the greatest
time required for Participant 3 being approximately 1 hour and 12 minutes, with an
average time of 44 minutes.

The time required for development is recorded in the log file of the Logger tool,
allowing the mean time across all 13 participants to be calculated. Table 4.6 shows
the percentage of time spent writing annotations using the HAnS Tool, which is
estimated at approximately 3.5% of the total mean time for all development peri-
ods.

40 4 Results

Total
annotation time

Total
Developing time

Participants Logger tool Videos Logger tool Videos

Participant 1 46161 46500 1487297 1445079

Participant 2 75387 75800 1767893 1868093

Participant 3 102708 102800 3773677 4326069

Participant 4 132678 112400 1285628 1740070

Participant 5 81510 75000 3812627 3878030

Participant 6 110945 108300 3110786 3627050

Participant 7 63820 63300 3115269 2896053

Participant 8 58522 61000 1378505 1377003

Participant 9 254209 132500 5787350 2997056

Participant 10 69375 80300 3594069 4089040

Participant 11 77796 77900 1856612 1709026

Participant 12 85826 78650 1706352 1656043

Participant 13 80401 82365 2427531 2962086

Mean 95334 84370 2700277 2659284

Average time spent on feature
annotations during development

3.5% 3.2%

Table 4.6: Average time spent annotating features during development for all 13
participants, including the mean of total Logger and video times.

To determine the effort required for recording annotations, the total time taken
for recording feature annotations was measured using the Logger tool and verified
through video recordings. Table 4.5 summarizes the recorded times.

• Mean time for total annotations (Logger Tool): 95334 ms.

• Mean time for total annotations (Video Recordings): 84370 ms.

• Standard deviation (Logger Tool): 52902 ms.

• Standard deviation (Video Recordings): 23620 ms.

These results indicate that, on average, participants took slightly longer to write fea-
ture annotations as measured by the Logger tool than the video recordings. This dis-
crepancy may be attributed to some participants not using the tool features correctly,
which led to some annotations being inaccurately logged.

4.2 RQ2: Effort 41

4.2.2 Effort of editing and removing annotations

In order to evaluate the effort involved in editing and removing annotations, it was
necessary to manually analyze the screen recordings of the participants as they per-
formed these tasks during the experiment. This was because the Logger tool did
not measure the editing time and was inaccurate in recording the time taken to
remove annotations. Qualitative observations from the video recordings highlighted
several major points. It was observed that participants frequently edited and re-
moved annotations, thereby increasing the total effort in terms of time. The most
prevalent tasks included correcting block and line annotations, mapping features,
and editing existing annotations. The use of common edits and removals, such as
the cutting and pasting of annotation markers, directly impacted the time spent
on annotation tasks. For example, some participants needed to edit or remove the
automatic insertion of double slashes (//) in block annotations and remove features
to edit them. Those participants who were more familiar with the HAnS tool or
quickly understood its functions (e.g., Participants 4 and 12) could edit and remove
annotations more efficiently, resulting in lower times for these tasks. Conversely,
participants with less experience took longer to complete these tasks, indicating
that familiarity with the HAnS tool significantly impacts the effort in terms of
time.

Manual Observations:

• Participants such as Participant 2 effectively used the "Surround with Feature
Annotation" function, with minimal deletions and efficient editing.

• Participant 5 encountered issues where some annotations were not logged accu-
rately, requiring additional time for correction.

• Participant 9 and others who relied on writing the annotations without the use
of the automatic HAnS tool suggestions faced an increased time requirement
due to the necessity of multiple edits and deletions.

An example of writing annotations using the HAnS tool suggestion is shown in
Figure 4.1 below.

Although the HAnS tool supports embedded feature traceability annotations, the
effort (in terms of time) is influenced by the frequency and complexity of editing and
removing annotations and the user’s familiarity with the HAnS tool.

42 4 Results

Figure 4.1: HAnS tool suggestion for writing annotations.

4.2.3 Effort required for navigation and annotation

Using embedded feature annotations requires both navigating and annotation writ-
ing efforts (in terms of time). In this study, we measured the time spent by
13 participants navigating the IDE and annotating during various development
tasks. This process was captured in video recordings to ensure accuracy and de-
tail.

During the development phases, participants faced the dual challenge of thinking
about what to annotate and deciding how best to annotate it, tasks that required
thoughtful consideration and added to the overall time invested in navigation. To
measure these efforts, we manually extracted data from the video recordings and
organized it into tables within the appendix Section (C). Effort for annotating,
including the navigating time. These tables categorically detail the time spent on
each annotation type in milliseconds.

To analyze the time spent navigating and annotating, the aggregated data were
summarized in table 4.7. This table presents not only the recorded times for each
annotation type, but also the total time spent navigating and annotating. Further-
more, it provides the mean and standard deviation of annotation times across all
participants, offering a comprehensive overview of the distribution and consistency
of effort.

4.2 RQ2: Effort 43

Feature
model

File
annotation

Folder
annotation

Block
annotation

Line
annotation

Total
annotation

Ps Ann.
Time

Nav.
Time

Ann.
Time

Nav.
Time

Ann.
Time

Nav.
Time

Ann.
Time

Nav.
Time

Ann.
Time

Nav.
Time

Ann.
Time

Nav.
Time

P1 7000 2500 20000 8300 1500 2000 14000 8200 4000 3500 46500 24500

P2 20000 2000 27000 5300 800 1500 18000 25800 10000 7200 75800 41800

P3 54000 9900 48000 7500 800 3400 25000 - 14000 - 102800 20800

P4 11000 5000 25500 14200 900 3000 54000 45400 21000 8500 112400 76100

P5 13000 8400 38000 12900 2000 2600 22000 19700 - - 75000 43600

P6 27000 7400 66500 32250 800 4200 10000 21900 4000 7500 108300 73250

P7 16000 15500 16300 8800 22500 6300 8500 45000 - - 63300 75600

P8 18000 64700 33000 25100 700 2000 16300 48000 - - 61000 139800

P9 11000 2000 50000 17100 5500 2800 59000 86900 - - 132500 108800

P10 - - 29500 9000 4500 7800 32500 36200 13800 14300 80300 67300

P11 23000 6000 21200 12500 2200 6000 26500 30000 5000 1300 77900 55800

P12 13000 5500 16250 11700 11000 4700 14500 41500 23900 13800 78650 77200

P13 13400 6000 18700 10600 465 1000 34300 41300 15500 6500 82365 65400

Mean 18867 11242 31535 13481 4128 3638 25738 37492 12356 7825 84370 66919

Std
Dev.

12399 17254 15303 7556 6263 2053 15804 19802 7263 4498 23620 32401

Table 4.7: Time measurements for Ann. (annotating) and Nav. (navigating) in
video recordings for all 13 participants.

In Table 4.8, the total time spent by the participants on navigation and annota-
tion tasks is highlighted. The table shows that, on average, approximately 5.69% of
the total development time was spent on these activities. This analysis provides a
detailed understanding of the time and effort involved in using the HAnS tool and
demonstrates the importance of efficient navigation and annotation in the develop-
ment process.

44 4 Results

Participants Total time (Annota-
tion + Navigation)

Total
Developing time

Participant 1 71000 1445079

Participant 2 117600 1868093

Participant 3 123600 4326069

Participant 4 188500 1740070

Participant 5 118600 3878030

Participant 6 181550 3627050

Participant 7 138900 2896053

Participant 8 200800 1377003

Participant 9 241300 2997056

Participant 10 147600 4089040

Participant 11 133700 1709026

Participant 12 155850 1656043

Participant 13 147765 2962086

Mean "AVG" 151290 2659284

Std dev. 43570 1080320

AVG time spent on a
total of annotating and
navigating during de-
velopment

5.69%

Table 4.8: Total time required for navigating and annotating, including the average
time during development.

4.3 Participants Knowledge

All study participants were introduced to the HAnS tool, including embedded fea-
ture annotations. They were then asked to perform development tasks in Java.
Before starting the development tasks, participants completed a series of warm-up
annotation tasks, followed by the main tasks, which were divided into two scenarios.
The tasks are described in the subsection entitled "Tasks Design" (3.3.2) within the
Methodology chapter.

After completing the tasks, participants were required to fill out a questionnaire to
provide feedback on their experiences with the HAnS tool for feature traceability
annotations. The tool’s evaluation is based on the questionnaire responses, which
are presented with diagrams for clarity.

4.3 Participants Knowledge 45

Occupation:

The participants were mainly students with programming backgrounds enrolled in
bachelor’s, master’s, and doctoral programs. Their occupations were recorded to
gain insight into the context of their experience with feature annotations while pro-
gramming simple Java code.

A total of thirteen participants were asked to indicate their current occupation. The
distribution of occupations among the participants is shown in Figure 4.2 below.
The largest group, comprising 46.2% of the participants, represents six individuals
pursuing a bachelor’s degree (BSc or BEng). The second largest group includes
five participants (38.5%) pursuing a master’s degree (MSc). The smallest group,
comprising 15.4% of participants and two individuals, engaged in PhD studies. No-
tably, none of the participants were categorized within the academic/scientist or
practitioner categories. This data indicates that most participants are engaged in
undergraduate and master’s studies, with a smaller portion involved in PhD. stud-
ies.

Figure 4.2: Occupation.

Programming Expertise:

All thirteen participants were requested to rate their programming expertise on a
scale from 1 (I can’t program at all) to 5 (I am an expert). The results, shown in
Figure 4.3, indicated that seven participants rated themselves at level 3 on the scale,
four at level 4, and two at level 2. The average rating for the participants was 3.15,
which indicated a medium level of programming expertise. This data provides insight
into the participants’ abilities in the development field.

46 4 Results

Figure 4.3: Rating of programming expertise.

Knowledge of Feature Annotations:

Thirteen participants were additionally requested to rate their knowledge of feature
annotations on a scale from 1 (I am a beginner) to 5 (I am an expert). As depicted
in Figure 4.4, five participants rated themselves at 1 on the scale, five at 2, and three
at 3. The average score indicated a relatively limited familiarity with the concept
of feature annotations, with an overall average of 1.85.

4.4 RQ3: Participants Perceptions 47

Figure 4.4: Knowledge of feature annotations.

4.4 RQ3: Participants Perceptions

To assess the difficulty of the tasks completed during development, participants
in the questionnaire were asked to respond to five questions regarding the diffi-
culty of tasks related to writing embedded feature annotations using the HAnS
tool in the experiment. Table 4.9 presents the questions related to the tasks’ diffi-
culty.

Questions related to the difficulty of tasks

1 How difficult was it to perform "Adding a feature to a feature model"?

2 How difficult was it to perform "Adding a feature-to-code mapping" using
block annotations?

3 How difficult was it to perform "Adding a feature-to-code mapping" using
a line annotation?

4 How difficult was it to perform "Adding a feature-to-file mapping"?

5 How difficult was it to perform "Find usages of a feature"?

Table 4.9: Questions regarding the difficulty of tasks related to feature annotations.

48 4 Results

The participants were asked to rate each task’s perceived difficulty on a scale from
1 (very easy) to 5 (very difficult). Table 4.10 presents the results, including the
difficulty ratings provided by each participant. As well as providing the standard
deviation and mean values for the task difficulty ratings.

Task 1
difficulty

Task 2
difficulty

Task 3
difficulty

Task 4
difficulty

Task 5
difficulty

P1 2 2 1 1 1

P2 1 2 2 2 1

P3 2 2 2 2 3

P4 2 2 2 3 2

P5 1 1 1 1 1

P6 1 1 1 1 2

P7 1 1 1 2 1

P8 2 3 3 2 1

P9 1 2 2 2 1

P10 3 3 2 2 1

P11 1 3 2 3 3

P12 2 2 2 2 3

P13 1 1 2 2 1

Mean 1.54 1.92 1.77 1.92 1.62

Std
Dev.

0.66 0.76 0.60 0.64 0.87

Table 4.10: Assessment of ratings, including difficulty ratings for various tasks per-
formed using the HAnS tool (1: very easy, 5: very difficult).

The HAnS tool was generally well received by the participants, with the majority
rating the tasks as either (easy) or (very easy). Among the tasks, Task 1 and Task 5
received the highest percentage of (very easy) ratings, making them the easiest. Al-
though Tasks 2 and 4 had slightly higher mean difficulty ratings, they still fell within
the easy range. Additionally, the low overall standard deviations indicate that the
difficulty ratings were consistent across all participants. These consistent low diffi-
culty ratings affirm that the tool effectively simplifies the task of annotating features
in code, making it a valuable resource for developers.

4.4 RQ3: Participants Perceptions 49

4.4.1 RQ3.1: How difficult was it to decide when to add
annotations?

Participants were asked to assess the challenge of deciding when to add anno-
tations. The following most intriguing elaborations are presented in detail be-
low:

“When working on a feature, that was easy. However, there was quite some
guidance on what steps to perform.”

This participant found the process uncomplicated when focused on a particular func-
tion, primarily because of the clear guidance provided on the steps.

“Since I was not sure about the current annotation style, it was overall
neutral but without respect to best practices it was rather very easy.”

This response demonstrates a neutral appreciation for the difficulty of the task, likely
due to uncertainty about the existing annotation style. Despite this, the participant
found the process relatively straightforward, although they acknowledged the po-
tential discrepancy with established best practices.

“Deciding on what to annotate is always a bit difficult in my opinion, be-
cause if it’s overdone the code can become cluttered. In this case it was only
a few so I think it can be very useful when searching for features.”

This participant highlighted the difficulty of determining which elements to anno-
tate, noting that while this could result in an overly complex code, in this case,
with only a few annotations, it could be highly beneficial for identifying specific
features.

The responses of the 13 participants to the question "How difficult was it to decide
when to add annotations?" revealed a range of experiences and insights. While some
found the process easy or straightforward, others encountered challenges, primarily
due to a lack of familiarity with the embedded feature annotations and uncertainty
about the need for annotations. Additionally, there was a need to balance the level
of detail in annotations to avoid cluttering the code.

4.4.2 RQ 3.2: How difficult was it to decide where to add
annotations?

Similarly, participants rated the difficulty of deciding on where to add annotations.
Responses varied. Important elaborations will be presented in more detail in the
following section:

“Neutral. the specifics of how the annotations will be used isn’t 100% clear
so it’s tricky to know where sometimes.”

50 4 Results

This response reports difficulty in determining the most appropriate locations for
the annotations due to a lack of clarity regarding the intended purpose of the anno-
tations. This resulted in a neutral experience.

“That was easy, too. I only annotate code I touched. Also there was no
interference with other code features.”

This participant found the process of annotating the code easy. This was because
the code was annotated only with the code with which the participant interacted,
and there was no interference with other code features.

“In this case it was easy if done correctly. But I can imagine more compli-
cated projects where features are intertwined or not that clearly separable.”

It was observed that annotations could be easily added in their current context, but
it was also acknowledged that more complex projects with interconnected features
might pose certain difficulties.

“After I decided when to annotate the decision of where to set the feature
annotation was not difficult at all.”

The participant found that once a decision had been made regarding the timing of
annotation additions, the whereabouts of their placement were identified as an easily
resolvable issue.

The responses to the question “How difficult was it to decide where to add anno-
tations?” show that people had different experiences. Some found it simple, while
others faced challenges, mainly depending on their knowledge of the embedded fea-
ture annotations. Few found it hard to decide where to annotate. This diversity
in responses underscores the importance of clear guidelines and familiarity with the
annotation process.

Participants generally found the annotation process manageable. However, few par-
ticipants expressed difficulty determining when and where to add annotations. This
indicates that while the tool provides helpful guidance, further improvements could
enhance usability.

4.4.3 What do you think are the benefits of embedded feature
traceability annotations?

The participants shared various opinions about the benefits of embedded feature
traceability annotations. This is exemplified by the following interesting quotes:

“Makes managing constantly changing databases easier.”

This response points out that embedded feature traceability annotations help man-
age databases that change frequently, likely by providing a clear and consistent way
to track changes and features.

4.4 RQ3: Participants Perceptions 51

“Improved Understanding of the codebase, easier to find features and their
implementations, easier to understand how features are interconnected.”

The annotations facilitate a deeper comprehension of the codebase, allowing for the
identification of features and understanding of their interconnections.

“They save time and effort in understanding how the code is related.”

It is recognized for the time and effort saved by annotating, especially by clarifying
the relationships within the code.

“Easier documentation, especially for later documentation. The annotation
is directly in the source code and not somewhere else (word documentation,
etc.), not related to a ’person’s knowledge.”

This demonstrates that annotations enhance documentation by integrating it into
the source code, thereby facilitating accessibility and eliminating the need for exter-
nal documents or individual expertise.

“Easy navigation, Easier refactoring, Improved security, implements the
principle of ’divide and conquer’.”

This response revealed multiple benefits, including improved navigation, easier refac-
toring, improved security, and implementation of the "divide and conquer" princi-
ple.

“Better documentation and for the project, new people are able to read the
code and understand it better.”

It shows that better documentation, facilitated by annotations, makes it easier for
new developers to understand the code.

“Due to this feature traceability, it is now much easier to find the imple-
mentation of a feature in several software assets. I find it very useful.”

This response notes the usefulness of feature traceability in helping to locate the im-
plementation of features in a wide variety of software assets.

“It is fast to find the code needed to do modification to parts of the codebase.”

It explains how embedded feature traceability annotations can be used to quickly
find and fix fragments of code in the code base.

The participants identified several benefits of embedded feature traceability anno-
tations. These benefits were summarized as improved understanding and manage-
ment of the codebase, more straightforward navigation and refactoring, time-saving
in finding and understanding features, and better documentation. These annota-
tions are particularly useful for new developers and maintaining a clear project
overview.

52 4 Results

4.4.4 In your opinion, what are the advantages of browsing
embedded feature traceability annotations?

Participants also provided their perspectives on the advantages of browsing embed-
ded feature traceability annotations, explaining how it enhances project navigation
and comprehension. Below are a few quotes:

“Work like comments in the code and have similar strengths. They also help
to find related code.”

This means that the embedded feature traceability annotations act like comments
and provide similar benefits, such as clarifying the code and helping to locate related
code segments.

“That makes coding easier when there are many contributors to the same
project, helps avoiding errors as well.”

This aspect of these annotations facilitates coding in collaborative environments,
thereby reducing errors and enhancing coordination among multiple contributors.

“Browsing makes it easier to find features in code, instead of manually
searching 1000+ lines of code.”

The text highlights the efficiency gains that can be achieved using annotations, as
they facilitate the identification of specific features without the necessity for manual
spotting of extensive lines of code.

“More intuitive to me as programmer than navigating like inside of a UML
class- diagram. Also faster in the development process. Projects are overall
easier to read.”

The evidence indicates that browsing annotations are a more intuitive and quicker
method than using UML class diagrams, which facilitates project understanding and
reading.

“Browsing the annotations helps getting an overview over the code and to
find parts of a feature. I think it will be especially useful on larger projects,
even more so with code written by someone else.”

It appears that annotations can be a helpful tool for providing an overview of the
code and assisting in finding feature locations, which could be particularly beneficial
for larger projects and when dealing with code written by others.

“It fits well for other programmers to know how methods in Implementation
work.”

It seems that annotations can help other programmers understand how methods
work within the implementation.

4.4 RQ3: Participants Perceptions 53

“It makes the process of writing code faster, by reducing the search time
with only adding minimal time consumption to add the annotations.”

This response shows that developers appreciate the speed gained in the coding pro-
cess by minimizing the time spent searching for specific sections of code while re-
quiring minimal effort to add annotations.

To summarize the quotes previously presented, the participants pointed out sev-
eral advantages of browsing embedded feature traceability annotations. These ad-
vantages encompass improved project organization and comprehension, optimized
decision-making and troubleshooting, intuitive navigation, and streamlined coding
practices. These annotations facilitate the identification of features within the code,
promoting teamwork and faster development.

4.4.5 How intuitive is it to browse embedded feature traceability
annotations?

Figure 4.5: Intuitiveness of browsing embedded feature traceability annotations?

In general, participants found the process of browsing embedded feature traceability
annotations to be intuitive and user-friendly. Most ratings fell within the (Intuitive)
to (Neutral) range. As shown in Figure 4.5, 46.2% of the participants rated the
process as (Intuitive), 38.5% as (Neutral), and 7.7% as (Very intuitive). A smaller
proportion of participants found it less intuitive, with 7.7% rating it as (Not In-
tuitive). This indicates that while some participants had a neutral experience, the
majority found the process intuitive and user-friendly, providing reassurance about
the feature traceability.

54 4 Results

4.4.6 How would you rate the usability of using embedded feature
traceability annotations?

Figure 4.6: Rating the use of embedded feature traceability annotations?

Thirteen participants rated the usability of embedded feature traceability anno-
tations highly. Figure 4.6 illustrates that the scores were predominantly between
(High) and (Neutral). Specifically, 53.8% of participants rated it as (High), and
46.2% as (Neutral). This suggests that many participants found the embedded
feature traceability annotations effective and reliable for their tasks, instilling con-
fidence in its usability.

4.4.7 The process of adding annotations enhances my
understanding of the codebase.

A total of 13 participants’ responses to the questionnaire were evaluated. Par-
ticipants generally agreed that the process of adding annotations enhanced their
understanding of the codebase, as shown in Figure 4.7, with most ratings fell be-
tween (Agree) and (Strongly Agree). Specifically, 61.5% of participants rated it as
(Agree) and 23.1% rated it as (Strongly Agree). Additionally, 15.4% of participants
remained (Neutral). This finding demonstrates that embedding feature annotations
not only enhances the documentation but also significantly helps in comprehending
the code structure and logic.

4.5 RQ4: Experience and Benefits 55

Figure 4.7: The process of adding annotations has improved their understanding of
the process.

4.5 RQ4: Experience and Benefits

The participants provided various insights into their experience and the benefits of
using the HAnS tool for embedded feature traceability annotations. Their responses
highlight numerous advantages of the tool, ranging from improved traceability to
better code navigation.

4.5.1 What do you think are the benefits of the HAnS tool?

Participants provided their responses on the benefits of the HAnS tool, elaborating
their perspectives. A few of these perspectives are presented below:

“Makes the coding process easier, especially for new coders.”

This underscores that the HAnS tool makes coding manageable, especially for be-
ginners needing additional guidance and support.

“Allows developers to explicitly document features and their relationships
and helps locate the code.”

The participant believes HAnS allows developers to document features and how they
relate to each other, making it easier to locate specific code.

“Easy feature traceability and annotation over a whole project (also bigger
scale).”

56 4 Results

HAnS provides easy-to-track and annotate features that work well in large projects.

“HAnS helps me as a developer to keep the locations of features implemented
in code clear for later usages. Especially for other developers who will start
working on the same project. It will be much easier for them to understand
the codebase.”

Here, the participant explains that the HAnS tool makes it easier to maintain clar-
ity about the locations of implemented features, which is particularly useful for
onboarding new developers and ensuring they can quickly understand the code-
base.

“It increases the velocity by enabling the developer to find the code faster.”

The report indicated that the HAnS tool increased the development process’s speed,
enabling developers to locate code more rapidly.

The participants commended the HAnS tool for facilitating the coding process, en-
hancing feature clarity, improving code traceability, facilitating project organization,
and simplifying navigation. These benefits have the potential to improve collabora-
tion, faster development, and overall project management.

Participants provided answers on various aspects of RQ4, which focused on develop-
ers’ perception of IDE-based tool support specific to HAnS. These answers included
ratings on difficulty, usability, usefulness, technical issues, and suggestions for im-
provement.

Critical aspects of the HAnS experience, such as difficulty, usability, and usefulness,
were evaluated and presented in Table 4.11.

Question P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Have you ever used
the HAnS tool for
feature annotation
before practicing in
the study?

No Yes Yes No Yes No No No No No Yes Yes Yes

How difficult is it
to learn how to use
the HAnS tool?

3 2 3 2 3 1 2 2 3 2 2 2 2

How did you find
the user interface
of the HAnS tool
in terms of us-
ability and user-
friendliness?

2 2 2 2 2 2 2 3 2 3 3 1 2

How useful is HAnS
based on the tasks
you performed in
the experiment?

2 1 2 4 2 5 2 1 2 2 3 1 2

Table 4.11: HAnS tool ratings

More than half of the participants had no prior experience with HAnS. They rated
the usability and user-friendliness of the HAnS tool highly, with scores mainly be-
tween 1 (Very User-Friendly) and 3 (Neutral). The learning difficulty of the HAnS

4.5 RQ4: Experience and Benefits 57

tool was also rated between 1 (Very Easy) and 3 (Neutral), indicating that par-
ticipants generally found the tool easy to use and effective for their tasks. Most
participants found the HAnS tool useful for managing feature annotations, with
scores mainly between 1 (Very Useful) and 5 (Not Very Useful), suggesting that it
adds value to the development process.

4.5.2 Technical issues or bugs encountered with the HAnS tool

The participants were queried to answer the question, “While using the HAnS
tool for feature annotation, did you encounter any technical issues or bugs?” Only
three participants reported encountering technical issues and provided substantiat-
ing quotes:

“The model view was not on by default which made it confusing.”

This issue shows that the HAnS tool’s default settings can lead to confusion. The
Model View is important for understanding the code structure and should be enabled
by default.

“I had to name files even though that does not seem to be necessary. When
adding the annotations manually, the closing is not automatically updated.”

This response identifies two issues: the unnecessary requirement to name files and
the lack of automatic updates for closing annotations when they are added manually.
Both of these can interrupt the workflow and lead to potential errors.

“GitHub Co-Pilot was annoying but also helping with annotations.”

These issues were noted for further improvement. Other participants either answered
"no" or passed on the question, indicating no significant technical issues.

The feedback highlights specific areas for potential improvement, including adjust-
ments to default settings, enhancements to the manual annotation process, and other
modifications to improve the HAnS tool’s usability and efficiency.

4.5.3 Suggestions for improvement:

Several participants offered suggestions for enhancing the HAnS tool, including im-
provements to the logging mechanism, more intuitive prompts, and integration with
the IDE to reduce bugs. Specific suggestions included:

“Make visualization better for adding and deleting features with their anno-
tations.”

58 4 Results

This proposal suggests the necessity for improved visualization tools within HAnS,
making adding and deleting features along with their annotations easier, thereby op-
timizing the user experience and reducing potential errors.

“Syntax highlighting when selecting begin/end annotation.”

It is recommended here that syntax highlighting be added for annotations, which
would make them more transparent with the "begin and end" annotations, assisting
in avoiding errors and improving code readability.

“None specific but needs to be better clarified.”

The feedback pointed out that some users found the current features and functional-
ities of HAnS unclear, suggesting a need for better documentation or more intuitive
user guidance.

“Automating functionality for tasks such as adding, removing,’ or moving
features annotations.”

This suggests the potential for automating common tasks related to feature annota-
tions, including adding, removing, and modifying annotations.

These suggestions were noted for future improvements, making the HAnS tool more
efficient, easier to use, and better integrated into developers’ workflows, enhancing
productivity and satisfaction.

4.5.4 Experience with the HAnS tool

The most interesting elaborations related to the question “Feel free to share your ex-
periences with the HAnS tool. “ are presented below in quotation marks:

“It was tricky at first to figure out what help is included in the tool. Espe-
cially marking code and then adding an annotation was pretty useful. There
are no options to go to the next or previous occurrence of code with the same
feature.”

This response reported that the users may find it challenging to understand the
available functionality of the HAnS tool. However, once users become familiar
with annotating using the tool, such as code-block annotations, they will likely
find it valuable. Also, a potential issue was identified regarding the lack of naviga-
tion options to facilitate the movement between occurrences of the same feature in
the code and suggested as an improvement to enhance the usability of the HAnS
tool.

“I find HAnS really helpful and can imagine myself using it in daily soft-
ware.”

4.6 RQ5: Alignment of Developers’ Experience and Understanding with their
Mental Model 59

One of several participants elaborated on the positive user experience with the HAnS
tool, where the participant found the HAnS tool very helpful and could see its poten-
tial for regular use in their daily software development activities.

These experiences illustrate the initial learning curve associated with the HAnS tool
and its eventual usefulness once users become familiar with using feature annota-
tions. Improvements in navigation options and more explicit help documentation
could enhance the user experience, making the tool more user-friendly and practical
for daily use.

4.6 RQ5: Alignment of Developers’ Experience and
Understanding with their Mental Model

The responses of 13 participants in the questionnaire were evaluated concerning the
RQ5.

Figure 4.8: Alignment of experiment and understanding?

Participants’ comprehension of the annotation paradigm and its alignment with
their mental model was evaluated after the presentation of the overall concept. Fig-
ure 4.8 visualizes that most participants felt that the experiment was well-matched
to their understanding of feature traceability annotations. Specifically, 53.6% re-
sponded with (Does match) while 30.8% responded with (Does match very well),
indicating a comprehensive understanding of the feature traceability annotations.
15.4% of participants responded with (Neutral). These positive experiences en-
hanced their overall experience with the tool, and they found the annotations in

60 4 Results

the experiment helpful in organizing their code. Overall, the results show that the
experiment effectively met participants’ expectations and understanding of the an-
notations.

5 Discussion

This chapter discusses the findings and implications of a user study experiment that
evaluated the usability of the HAnS and Logger tools in documenting embedded
annotations within the IntelliJ integrated development environment. It provided
specific observations and insights gathered during the evaluation process. Key top-
ics covered include discrepancies in the total times recorded by the Logger tool and
videos during development, challenges associated with detecting block and line an-
notations, the impact of navigation and annotation efforts on the results, experiment
execution times, and users’ perceptions regarding the usability of embedded feature
annotations.

5.1 Discrepancies in Total Development Time

Notably, the total development times recorded by the Logger tool and the one cap-
tured by the video differ. One of the reasons explaining these discrepancies lay in
the fact that some video recordings (made by participants) started at different
phases of their development process, either before or after launching the Integrated
Development Environment (IDE). The Logger tool starts recording once the IDE is
active, which may not fully capture the initial preparation phases of the develop-
ment.

5.2 Inconsistencies in Total Annotation Time

The data from the Logger tool corresponding to the total annotation time were
generally consistent with the video data, but there were some notable exceptions.
For instance, Participant 9 recorded 254 seconds of the total annotation time using
the Logger tool, whereas the video only captured 132 seconds. Similarly, Participant
4 recorded approximately 133 seconds of the total annotation time using the Logger
tool, while the video recorded 112 seconds. Such discrepancies were also observed in
other participants, particularly with block annotations.

Several factors likely contributed to these discrepancies. First, human errors oc-
curred. Participants spent more time than necessary on certain tasks, such as think-
ing or pausing, which the Logger tool recorded as active annotation time. Second,
Logger sensitivity has been an issue. The Logger tool was more sensitive to quick

62 5 Discussion

annotations within the IDE, resulting in the recording of annotation time, even when
the participant was not actively annotating.

5.3 Differences in Block and Line Annotations

A discrepancy in the recording times of annotations was observed between the Log-
ger tool and the video data. Participants 4 and 9 exhibited particularly notable
differences in annotation times. The following reasons likely contributed to this
discrepancy:

• Complexity of Block Annotations: Block annotations often involve exten-
sive changes and code reviews, resulting in longer recording times. The Logger
tool captures these feature annotations by starting keypresses and recognizing
the specified syntaxes. For example, it recognizes "// &l"; &line, "// &b"; &be-
gin, and "// &e" ; &end.

• Annotation Process: Participants spent additional time reviewing or editing
the block/line annotations, which inflated the Logger’s recorded times.

This also explains why the block annotation times recorded by the Logger tool
were inaccurate. The complexity and additional steps in creating block annotations
contributed to this inaccuracy. Few participants invested more time and effort to
ensure accuracy and comprehensiveness, which the Logger properly documented as
extended annotation time.

To improve the accuracy of block annotation times, future releases of the Logger
tool would benefit from integrating more advanced tracking mechanisms that can
detect most annotations within real-world software development scenarios. These
mechanisms would facilitate processing various annotations, including those involv-
ing copying and pasting feature annotations.

5.4 Unaccounted Block and Line Annotations

The Logger tool missed some block and line annotations, particularly when partic-
ipants used copy-pasting. In real-world development scenarios, copy-pasting anno-
tations can bypass the Logger’s tracking mechanism, leading to discrepancies. This
behavior highlights a limitation of the Logger tool, which cannot reliably detect copy-
paste annotations. The inclusion of these cases in the evaluation may not provide a
fair comparison. It is essential to distinguish between manually created annotations
and those added through copy-pasting, as the latter cannot be accurately tracked
by the Logger.

5.5 Effort in Navigating and Annotating 63

The act of copying and pasting a moment in milliseconds was inherently difficult to
measure. Consequently, there are no Logger implementations for a copy and paste,
resulting in a relatively short time when performing this kind of annotation. This is
comparable to the speed of the refactor feature annotations. It is important to note
that just annotating the "//&begin" does not result in a complete annotation, nor
does just annotating the "//&end", result in the Logger tool recording. Furthermore,
the Logger tool will not record the action if the annotation is not performed correctly
or in the correct format for both line and block annotations. This is the case
regardless of whether the user presses the suggestion on the keyboard tab or selects
the HAnS tool suggestions with a mouse click, as shown in Figure 4.1 Deletions of
"//&block" and "//&line" annotations were logged into the log file with the following
annotation types: "//&block" and "//&line".

5.5 Effort in Navigating and Annotating

The study measured the time spent on navigation and annotation using the embed-
ded feature annotations through the HAnS tool. On average, participants allocated
5.69% of their total development time to these activities. This relatively small
percentage suggests that while the HAnS tool incurs some additional time, it is
not excessively time-consuming, especially when considering its potential benefits in
terms of code comprehension and maintenance.

Additionally, it was observed that the fastest participant was number 1, who took
approximately 1.11 minutes to annotate and navigate, while the slowest participant
was number 9, who took approximately 4 minutes.

Table 4.8 shows the variability in the time spent on annotation and navigation,
possibly due to differences in individual practices with the HAnS tool. Some par-
ticipants required more time to become proficient in the annotation process, while
others were quicker, possibly reflecting their diverse thinking and decision-making
processes.

The findings suggest that the use of embedded feature annotations via the HAnS tool
is manageable in terms of the additional effort required and that it can be integrated
into the development workflow without causing significant disruption. Further re-
search in real-world scenarios could investigate methods to improve the efficiency
of the annotation process and the efforts involved. In addition, the impact of fea-
ture annotation usability in large-group samples on long-term code maintenance and
collaboration can be explored.

Despite some variability, the consistency of the findings across participants sug-
gests the potential for wider adoption. However, the results also indicate areas

64 5 Discussion

for improvement. For example, the user interface could be improved, and anno-
tation decisions could be better supported, which would further reduce the time
required.

5.6 Experimental Execution Times

The experimental study showed that Participant 8 completed the experiment in
the shortest time, approximately 22 minutes. In contrast, Participant 3 took the
longest time, about 1 hour and 12 minutes, with an average time of 44 minutes for
all participants.

The variability in the experiment execution times can be attributed to participants
approaching the tasks differently. For instance, Participant 3 may have employed
a more meticulous development approach, prioritizing accuracy over speed, which
resulted in a longer total development time. Conversely, Participant 8 used different
techniques to complete the development tasks, such as copying and pasting the code,
which affected the total development time.

5.7 User Perception and Qualitative Insights

Despite these discrepancies, the study collected substantial qualitative and quantita-
tive data on user perception. Participants generally found that the embedded feature
traceability annotations improved their understanding by allowing them to browse
the source code, highlight significant code fragments, and minimize development
time. The HAnS tool was also useful for creating embedded feature annotations.
The HAnS tool enabled better code organization, easier navigation, and a better
understanding of the code base.

6 Threats to Validity

The potential threats to the validity of our study can be classified into four main cate-
gories: external validity, internal validity, construct validity, and conclusion validity.
Each category deals with specific concerns related to the study’s design, execution,
and interpretation. Understanding these threats is crucial for critically evaluating
the reliability and applicability of research results.

External Validity. This refers to the extent to which the results of this study can
be generalized to other contexts. Our experiment focused on evaluating the HAnS
tool for documenting embedded annotations using the Logger tool in the IntelliJ
IDE. The subject system used for the user study, DARTPlus, is relatively simple,
consisting of 18 features and approximately 1500 lines of code. This simplicity
may limit the generalizability of our findings to more complex systems with larger
codebases and more complicated feature interactions. However, the choice of a
simple subject system was intended to minimize misunderstandings and facilitate
the tasks, considering the time constraints. The subject system was carefully chosen
to mimic real-world software systems.

Internal Validity. This study employs a single-subject design, which provides nu-
merous data points to support statistically valid conclusions. This design allows all
participants to experience the same conditions and tasks, thereby facilitating direct
comparisons within the group. Screencasts and log files were recorded throughout
the study to gain insights and ensure that any differences observed were due to the
functionalities of the tools rather than other variables.

However, many participants’ unfamiliarity with the HAnS tool, the embedded fea-
ture annotations, and the subject system may limit the experiment’s internal validity.
The introduction of the tool and annotations may have affected participants’ perfor-
mance due to the learning curve associated with these new elements. Despite these
limitations, the consistent use of the Logger tool to capture detailed data about
participants’ interactions with the HAnS tool helped maintain the integrity of the
study.

The accuracy of time measurements depends on the precision of video analysis.
Manual data extraction from recording videos is subject to human error, which could
affect the reported times. To mitigate this, we conducted multiple reviews of the
recording videos to cross-verify the time measurements.

66 6 Threats to Validity

Construct Validity. The study was evaluated to determine whether the method-
ology accurately measured the intended concept, namely the usability and effective-
ness of the HAnS tool for documenting embedded feature annotations. To op-
erationalize these constructs, specific tasks and questions were designed to elicit
participants’ experiences with the HAnS tool. The tasks were informed by a pilot
study that balanced the need for comprehensive data. It was conducted to avoid any
misunderstandings that participants might encounter during the experiment and to
validate the clarity of the tasks. The tasks included adding, browsing, and under-
standing annotations, which represent typical activities developers engage in. While
the simplicity of the subject system, DARTPlus was necessary for the experiment,
it may not fully capture the challenges of using the HAnS tool in more complex
environments.

The time spent on navigation and annotation was measured in milliseconds, but
the cognitive load and the mental effort required were not directly assessed. Future
studies could incorporate subjective measures, such as surveys or interviews, to gain
insights into the perceived difficulty of using the tool.

Our setup included using the HAnS tool, recording the annotations with the Logger
tool, and screen-casting in the IntelliJ IDE to provide a realistic environment. How-
ever, the participants’ familiarity with the HAnS tool could influence their perfor-
mance. Lastly, the tool’s interface and the tasks helped establish construct validity,
ensuring participants’ experiences reflected their understanding of embedded feature
annotations.

Conclusion Validity. To support the conclusion’s validity, we employed well-
accepted statistical tests to validate the results.

7 Conclusion

This thesis investigated the usability of embedded annotations for documenting fea-
ture locations in code. The goal of the study was to measure the effort required
to write embedded feature annotations using the HAnS tool during development
in terms of time. HAnS is a Java-based plugin that facilitates the annotation pro-
cess by allowing the user to specify feature mappings to assets of different types,
including files, folders, and code fragments [22].

Due to the significant time developers spend nowadays understanding the code base
and locating features during the software development process, we conducted a user
study for writing embedded feature annotations using the HAnS tool. This was
achieved by recording timestamps for completing embedded feature annotations as
well as the total development time for these annotations within the code while per-
forming development tasks. The first goal was to verify the accuracy and efficiency of
the Logger tool and evaluate the efficiency and usability of the HAnS tool. Addition-
ally, the time required for navigation was measured to assess the total effort required
for navigating and annotating during development. We collected a combination of
quantitative and qualitative data through this experimental study and the question-
naire. A total of 13 participants took part in the experiment investigating the use
of embedded feature annotations with the HAnS tool.

The study results provide valuable insights into the performance of the Logger tool
in real-world scenarios. While the tool demonstrated accuracy in most cases, sta-
tistical tests revealed discrepancies in the p-values associated with the block and
line annotation functionality. Potential differences in the p-values according to the
statistical analysis are presented in Table 4.4 of the interpretations in the Results
chapter.

Moreover, the study indicates that the average time spent on recording feature an-
notations across all 13 participants during the development process is approximately
3.2% of the total mean time for all development periods, as demonstrated in Table
4.6. The study also demonstrates that, on average, 5.69% of the total development
time was spent on both navigation and annotation using the HAnS tool. This in-
dicates that although minimal additional effort was required to use the HAnS tool
for documenting embedded feature annotations, it was relatively small compared to
the total development time.

Integrating embedded feature annotations into the development process requires
minimal additional effort and can be incorporated without significant disruptions.

The participants from our controlled experiments, representing different levels of
programming expertise, provided positive feedback on the HAnS tool and embed-
ded annotations. Furthermore, HAnS appears to be a viable option for integrating
feature annotations into developers’ daily development workflow without imposing
a significant additional effort on the developers.

Although the Logger tool provided satisfactory performance in several functional
areas, further development is necessary in certain areas, such as the recording of
block and line annotations. The results of our controlled experiment indicated the
potential for discrepancies in certain cases. Consequently, we suggest that the Logger
tool should be compatible with all releases of IntelliJ IDEA, including the latest
versions. Similarly, we recommend that the HAnS tool be compatible not only with
the IntelliJ IDEA but also with other integrated development environments (IDEs).
Therefore, further development is necessary to enhance the tool’s functionality and
accuracy.

The study’s findings indicate that the incorporation of embedded feature annotations
can enhance feature traceability and management, potentially increasing productiv-
ity and improving code maintainability. This could subsequently reduce developers’
efforts. Future research investigations into the usability and impact of feature anno-
tations on long-term code maintenance and collaboration within larger groups would
provide deeper insights.

We hope that this user study will provide valuable insight to practitioners aiming
to document feature locations within the code.

List of Figures

2.1 Illustrates the Embedded Feature Annotations of the DARTPlus rent
system. 9

2.2 Feature model of the Snake game. 11
2.3 Feature-to-file mapping. 11
2.4 Feature-to-folder mapping. 12
2.5 Example of a Logger tool JSON log file. 13

3.1 Overview of the experiment. 20
3.2 Feature model of the DARTPlus subject system. 23
3.3 Embedded feature annotations. 25
3.4 Adding a feature-to-code mapping. 26
3.5 Navigating feature models. 26

4.1 HAnS tool suggestion for writing annotations. 42
4.2 Occupation. 45
4.3 Rating of programming expertise. 46
4.4 Knowledge of feature annotations. 47
4.5 Intuitiveness of browsing embedded feature traceability annotations? 53
4.6 Rating the use of embedded feature traceability annotations? 54
4.7 The process of adding annotations has improved their understanding

of the process. 55
4.8 Alignment of experiment and understanding? 59

List of Tables

4.1 Output results of the Shapiro-Wilk test. 36
4.2 Statistical test selection. 36
4.3 Time comparison between Logger tool and videos for all 13 participants. 37
4.4 Interpretation results for each annotation type. 38
4.5 Mean (average) and Std Dev. (standard deviation) for the Logger

tool and videos of the effort in terms of time for each participant. . . 39
4.6 Average time spent annotating features during development for all 13

participants, including the mean of total Logger and video times. . . 40
4.7 Time measurements for Ann. (annotating) and Nav. (navigating) in

video recordings for all 13 participants. 43
4.8 Total time required for navigating and annotating, including the av-

erage time during development. 44
4.9 Questions regarding the difficulty of tasks related to feature annotations. 47
4.10 Assessment of ratings, including difficulty ratings for various tasks

performed using the HAnS tool (1: very easy, 5: very difficult). . . . 48
4.11 HAnS tool ratings . 56

B.1 Measured times for each of the annotations from the Logger and the
screencast for Participant 1. 99

B.2 Measured times for each annotation type from the Logger and the
screencast for Participant 1. 100

B.3 Measured times for each of the annotations from the Logger and the
screencast for Participant 2. 101

B.4 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
2. 101

B.5 Measured times for each of the annotations from the Logger and the
screencast for Participant 3. 102

B.6 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
3. 103

B.7 Measured times for each of the annotations from the Logger and the
screencast for Participant 4. 104

B.8 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
4. 105

B.9 Measured times for each of the annotations from the Logger and the
screencast for Participant 5. 106

B.10 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
5. 106

B.11 Measured times for each of the annotations from the Logger and the
screencast for Participant 6. 107

B.12 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
6. 108

B.13 Measured times for each of the annotations from the Logger and the
screencast for Participant 7. 109

B.14 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
7. 109

B.15 Measured times for each of the annotations from the Logger and the
screencast for Participant 8. 110

B.16 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
8. 110

B.17 Measured times for each of the annotations from the Logger and the
screencast for Participant 9. 111

B.18 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
9. 112

B.19 Measured times for each of the annotations from the Logger and the
screencast for Participant 10. 113

B.20 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
10. 113

B.21 Measured times for each of the annotations from the Logger and the
screencast for Participant 11. 114

B.22 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
11. 114

B.23 Measured times for each of the annotations from the Logger and the
screencast for Participant 12. 115

B.24 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
12. 116

B.25 Measured times for each of the annotations from the Logger and the
screencast for Participant 13. 117

B.26 Total of the measured times for each type of annotation from the Log-
ger and the screencast, including the difference time for Participant
13. 117

C.1 Measured times for each annotation in the screencast and navigation
time for Participant 1. 119

C.2 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 1. 120

C.3 Measured times for each annotation in the screencast and navigation
time for Participant 2. 121

C.4 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 2. 121

C.5 Measured times for each annotation in the screencast and navigation
time for Participant 3. 122

C.6 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 3. 122

C.7 Measured times for each annotation in the screencast and navigation
time for Participant 4. 123

C.8 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 4. 123

C.9 Measured times for each annotation in the screencast and navigation
time for Participant 5.. 124

C.10 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 5. 124

C.11 Measured times for each annotation in the screencast and navigation
time for Participant 6 . 125

C.12 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 6 125

C.13 Measured times for each annotation in the screencast and navigation
time for Participant 7. 126

C.14 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 7. 126

C.15 Measured times for each annotation in the screencast and navigation
time for Participant 8. 127

C.16 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 8. 127

C.17 Measured times for each annotation in the screencast and navigation
time for Participant 9. 128

C.18 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 9. 129

C.19 Measured times for each annotation in the screencast and navigation
time for Participant 10. 130

C.20 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 10. 130

C.21 Measured times for each annotation in the screencast and navigation
time for Participant 11. 131

C.22 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 11. 131

C.23 Measured times for each annotation in the screencast and navigation
time for Participant 12 . 132

C.24 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 12. 132

C.25 Measured times for each annotation in the screencast and navigation
time for Participant 13. 133

C.26 Total of measured times for each type of annotation performed on
the screencast, including navigation time, with total annotation and
navigation time counted for Participant 13. 133

Bibliography

[1] Hasanain Al-Aassi. hasanainq/HAnS-experiment-. https : / / github . com /
hasanainq/HAnS-experiment-. [Accessed: July 20, 2024]. 2024.

[2] B. Andam, A. Burger, T. Berger, and M. R. Chaudron. “FLOrIDA: Feature
LOcatIon DAshboard for Extracting and Visualizing Feature Traces”. In: Proc.
Eleventh Int. Workshop Var. Modeling Softw.-Intensive Syst., VAMOS ’17.
Eindhoven, Netherlands: Association for Computing Machinery, 2017, pp. 100–
107. isbn: 9781450348119. doi: 10.1145/3023956.3023967. url: https:
//doi.org/10.1145/3023956.3023967.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. “Recovering
Traceability Links Between Code and Documentation”. In: IEEE Transactions
on Software Engineering 28.10 (2002), pp. 970–983. doi: 10.1109/TSE.2002.
1041053.

[4] S. Apel and C. Kästner. “An overview of feature-oriented software develop-
ment”. In: Journal of Object Technology 8.5 (2009), pp. 49–84.

[5] T. Berger, M. Chechik, T. Kehrer, and M. Wimmer. “Software evolution in
time and space: Unifying version and variability management (Dagstuhl sem-
inar 19191)”. In: Dagstuhl Reports (2019).

[6] T. Berger, D. Lettner, J. Rubin, P. Grünbücher, A. Silva, M. Becker, M.
Chechik, and K. Czarnecki. “What is a Feature? A Qualitative Study of Fea-
tures in Industrial Software Product Lines”. In: SPLC. 2015.

[7] K. Chen, W. Zhang, H. Zhao, and H. Mei. “An approach to constructing
feature models based on requirements clustering”. In: Proceedings of the In-
ternational Conference on Requirements Engineering. 2005, pp. 31–40.

[8] Clipchamp Video Editor for Windows. https://clipchamp.com/en/windows-
video-editor/. [Accessed: May 19, 2024].

[9] G. Divine, H. J. Norton, R. Hunt, and J. Dienemann. “A review of analysis
and sample size calculation considerations for Wilcoxon tests”. In: Anesthesia
Analgesia 117.3 (2013), pp. 699–710.

[10] A. L. Egel, C. H. Barthold, J. L. Kouo, and F. S. Maajeeny. “Single-subject
design and analysis”. In: The Reviewer’s Guide to Quantitative Methods in the
Social Sciences. Routledge, 2018, pp. 417–433.

https://github.com/hasanainq/HAnS-experiment-
https://github.com/hasanainq/HAnS-experiment-
https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1109/TSE.2002.1041053
https://clipchamp.com/en/windows-video-editor/
https://clipchamp.com/en/windows-video-editor/

[11] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. “Enhancing
clone-and-own with systematic reuse for developing software variants”. In: IC-
SME. 2014.

[12] M. W. Godfrey and D. M. German. “The past, present, and future of software
evolution”. In: Frontiers of Software Maintenance. 2008, pp. 129–138.

[13] E. González-Estrada and W. Cosmes. “Shapiro–Wilk test for skew normal
distributions based on data transformations”. In: Journal of Statistical Com-
putation and Simulation 89.17 (2019), pp. 3258–3272.

[14] J. Hayes and A. Dekhtyar. “Humans in the Traceability Loop: Can’t Live
With ’Em, Can’t Live Without ’Em”. In: Proceedings of the 3rd Workshop on
Traceability in Emerging Forms of Software Engineering. 2005.

[15] H. Jansson and J. Martinson. HAnS: IDE-based editing support for embedded
feature annotations. https://hdl.handle.net/20.500.12380/302926.
Master’s Thesis. [Accessed: July 20, 2024]. 2021.

[16] JetBrains Plugins. https://plugins.jetbrains.com/. [Accessed: July 20,
2024].

[17] H. Jordan, J. Rosik, S. Herold, G. Botterweck, and J. Buckley. “Manually
Locating Features in Industrial Source Code: The Search Actions of Software
Nomads”. In: International Conference on Program Comprehension (ICPC).
IEEE, 2015, pp. 174–177. doi: 10.1109/ICPC.2015.26.

[18] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep. CMU/SEI-
90-TR-21. Software Engineering Institute, 1990.

[19] J. Krüger, T. Berger, and T. Leich. “Features and How to Find Them: A
Survey of Manual Feature Location”. In: Software Engineering for Variability
Intensive Systems: Foundations and Applications. Ed. by M. Galster I. Mistrik
and B. Maxim. https://www.cse.chalmers.se/~bergert/paper/2018-
sevis-manual_fl.pdf [Accessed: July 21, 2024]. Taylor & Francis Group,
LLC/CRC Press, 2018.

[20] J. Krüger, M. Pinnecke, A. Kenner, C. Kruczek, F. Benduhn, T. Leich, and
G. Saake. “Composing Annotations Without Regret”. In: Software: Practice
and Experience (2017).

[21] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. L. Traon. “Bottom-
up technologies for reuse: Automated extractive adoption of software product
lines”. In: ICSE-C. 2017.

[22] J. Martinson, H. Jansson, M. Mukelabai, T. Berger, A. Bergel, and T. Ho-
Quang. “HAnS: IDE-Based Editing Support for Embedded Feature Annota-
tions”. In: 25th ACM International Systems and Software Product Line Con-
ference - Volume B (SPLC ’21). 2021.

https://hdl.handle.net/20.500.12380/302926
https://plugins.jetbrains.com/
https://doi.org/10.1109/ICPC.2015.26
https://www.cse.chalmers.se/~bergert/paper/2018-sevis-manual_fl.pdf
https://www.cse.chalmers.se/~bergert/paper/2018-sevis-manual_fl.pdf

[23] A. von Mayrhauser, A. M. Vans, and A. E. Howe. “Program Understanding
Behavior During Enhancement of Large-Scale Software”. In: Journal of Soft-
ware Maintenance: Research and Practice 9.5 (1997), pp. 299–327.

[24] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. “On the Equivalence
of Information Retrieval Methods for Automated Traceability Link Recovery”.
In: International Conference on Program Comprehension (ICPC). IEEE, 2010,
pp. 68–71. doi: 10.1109/ICPC.2010.20.

[25] L. Passos, K. Czarnecki, S. Apel, A. Wąsowski, C. Kästner, and J. Guo.
“Feature-oriented software evolution”. In: Proceedings of the 7th International
Workshop on Variability Modelling of Software-Intensive Systems. 2013, pp. 1–
8.

[26] T. Pfofe. Automating the Synchronization of Software Variants. https://
wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/thesisPfofe16.
pdf. Master’s Thesis. [Accessed: July 20, 2024]. Germany, 2016.

[27] C. Prehofer. “Feature-oriented programming: a fresh look at objects”. In: Proc.
Europ. Conf. Object-Oriented Programming, ECOOP. Berlin, Heidelberg, New
York, London: Springer, 1997, pp. 419–443.

[28] M. Revelle, T. Broadbent, and D. Coppit. “Understanding Concerns in Soft-
ware: Insights Gained from Two Case Studies”. In: International Workshop on
Program Comprehension (IWPC). IEEE, 2005, pp. 23–32. doi: 10.1109/WPC.
2005.43.

[29] P. Royston. “Approximating the Shapiro-Wilk W-test for non-normality”. In:
Statistics and Computing 2 (1992), pp. 117–119.

[30] J. Rubin, K. Czarnecki, and M. Chechik. “Cloned product variants: from ad-
hoc to managed software product lines”. In: International Journal on Software
Tools for Technology Transfer 17.5 (2015), pp. 627–646.

[31] J. Rubin, K. Czarnecki, and M. Chechik. “Managing cloned variants: A frame-
work and experience”. In: SPLC. 2013.

[32] Julia Rubin and Marsha Chechik. “A Survey of Feature Location Techniques”.
In: Domain Engineering. Springer, 2013, pp. 29–58.

[33] Love Rymo and Fadi Abunaj. Benefits and Costs of Enabling Variability and
Traceability in Source Code via Feature Annotations. https://odr.chalmers.
se / items / 95e309fe - 695f - 41da - b421 - 8d5cbb5f8ab0 / full. Bachelor’s
Thesis. [Accessed: May 18, 2024]. 2023.

[34] T. Schwarz. Design and assessment of an engine for embedded feature anno-
tations. https://gupea.ub.gu.se/bitstream/handle/2077/67948/gupea_
2077_67948_1.pdf?sequence=1&isAllowed=y. Master’s Thesis. [Accessed:
July 20, 2024]. Sweden, 2021.

https://doi.org/10.1109/ICPC.2010.20
https://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/thesisPfofe16.pdf
https://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/thesisPfofe16.pdf
https://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/thesisPfofe16.pdf
https://doi.org/10.1109/WPC.2005.43
https://doi.org/10.1109/WPC.2005.43
https://odr.chalmers.se/items/95e309fe-695f-41da-b421-8d5cbb5f8ab0/full
https://odr.chalmers.se/items/95e309fe-695f-41da-b421-8d5cbb5f8ab0/full
https://gupea.ub.gu.se/bitstream/handle/2077/67948/gupea_2077_67948_1.pdf?sequence=1&isAllowed=y
https://gupea.ub.gu.se/bitstream/handle/2077/67948/gupea_2077_67948_1.pdf?sequence=1&isAllowed=y

[35] Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. “A Common Nota-
tion and Tool Support for Embedded Feature Annotations”. In: Proceedings of
the 24th ACM International Systems and Software Product Line Conference -
Volume B. New York, NY, USA: ACM, 2020.

[36] D. Strüber, M. Mukelabai, J. Krüger, S. Fischer, L. Linsbauer, J. Martinez, and
T. Berger. “Facing the truth: benchmarking the techniques for the evolution
of variant-rich systems”. In: SPLC. 2019.

[37] The IntelliJ Platform. https://plugins.jetbrains.com/docs/intellij/
intellij-platform.html.

[38] T. Thüm, T. Kästner, C. Benduhn, F. Meinicke, J. Saake, and T. Leich. “Fea-
tureIDE: An extensible framework for feature-oriented software development”.
In: Science of Computer Programming 79 (2014), pp. 70–85.

[39] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. “How Develop-
ers Perform Feature Location Tasks: A Human-Centric and Process-Oriented
Exploratory Study”. In: Journal of Software: Evolution and Process 25.11
(2013), pp. 1193–1224.

[40] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Treva Pounds. “A Com-
parison of Methods for Locating Features in Legacy Software”. In: Journal
of Systems and Software 65.2 (2003), pp. 105–114. doi: 10.1016/S0164-
1212(02)00052-3.

[41] R. F. Woolson. “Wilcoxon signed-rank test”. In: Encyclopedia of Biostatistics
8 (2005). [Online]. Available: https : / / doi . org / 10 . 1002 / 0470011815 .
b2a15177.

https://plugins.jetbrains.com/docs/intellij/intellij-platform.html
https://plugins.jetbrains.com/docs/intellij/intellij-platform.html
https://doi.org/10.1016/S0164-1212(02)00052-3
https://doi.org/10.1016/S0164-1212(02)00052-3
https://doi.org/10.1002/0470011815.b2a15177
https://doi.org/10.1002/0470011815.b2a15177

A Experiment Materials

A.1 HAnS Tutorial Introduction

A.2 Installation Guidelines for the HAnS Plugin and
Logger Tool.

Installation Guidelines for the HAnS Tool:

This section offers comprehensive installation instructions for the HAnS (Helping
Annotate Software) tool. By following these guidelines, you will be able to configure
the HAnS tool within your Integrated Development Environment (IDE).

Before you start installing HAnS, make sure your system meets the following re-
quirements:

• You have a Windows, IOS, or Linux operating system.

• You have one of these IDEs (IntelliJ IDEA, PyCharm and Android Studio)
installed on your system to proceed with the installation.

Follow the steps below to download and install the HAnS tool:

Downloading HAnS:

To initiate the download process, first visit the official JetBrains Marketplace for

Here are the steps to download HAnS:

• Using built-in plugin system in your IDE, navigate to Settings/Preferences >
Plugins > Marketplace.

• Perform a search for "HAnS", and proceed to install the plugin.

If you encounter difficulties finding it through the built-in system, you also have the
option for manual installation:

• Download the latest release from this link: (HAnS Latest Release)

• Install the plugin manually by accessing Settings/Preferences > Plugins > Ó>
Install plugin from disk...

To ensure a successful installation of the HAnS tool, you need to follow a few
steps:

• Launch the IDE. Create a new software project or open an existing one.

• You should then be able to access the features of the HAnS tool within your IDE,
including code completion, syntax highlighting and feature annotation support.

https://plugins.jetbrains.com/plugin/22759-hans-helping-annotate-software-/versions

Troubleshooting:

If you encounter any problems while installing or configuring the HAnS tool, you
can refer to the official documentation available on the (HAnS GitHub & HAnS-
Bitbucket or contact the developers for assistance. In this chapter we have provided
comprehensive installation guidelines for the HAnS tool. By following these steps,
you will be able to integrate HAnS with your chosen integrated development en-
vironment to streamline feature annotation and management during your software
development tasks.

https://github.com/isselab/HAnS/
https://github.com/isselab/HAnS/

A.3 DARTPlus Subject System Features

Search: All users can browse through the rentable items. Search allows users to find
a particular item given an ID. Users can also find items based on their titles, genre,
and year of release. Lastly, users can filter items by item type (video game, song).
Location: Customer.java, Employee.java, Manager.java

IO: Short for "Input Output", is an abstract feature comprising sub-features pro-
viding user interaction. Comprises all the menus for different users of the system.
Presents a list of all options of activities a user can perform, as well as the option
to exit in case the user has completed the interaction. Also verifies that users
only enter valid options and prompts users to enter a valid option if they provide
an invalid value. Responsible for delegating the responsibilities to the right class
based on the provided input. Also responsible for handling user input. User input
can be of different data types (number, string, character), and used for different
purposes (entering password, selecting from the menu options). Checks if the input
follows the required format and conforms to other criterion. Re-asks the user for
input in case a wrong value is added, or otherwise throws an exception. Location:
IO

Data: Deals with data management in the system. Managers use the feature to
manage the data about employees (registering and removing employees). Employ-
ees use it to manage customers (registering and removing them), and to manage
rentable items (adding and removing). Location: Employee.java, Manager.java

Membership: Allows customers to request upgrades in their memberships (silver,
gold, platinum). Customers receive more benefits with each increasing membership
level. The feature also stores all pending membership requests and allows employees
to accept or refuse them. Location: Employee.java, Customer.java

View: Abstract feature allowing users to view different things in the system.

ViewStats: Intended for Managers and Employees, the feature calculates and
shows different types of stats related to the system. A few examples are aver-
age ratings of a rentable item (video game or song), renting frequency of an item,
and most profitable item from the catalogue to display to the manager and em-
ployees. The feature is also used by employees to view all registered customers,
and for managers to view all registered employees. Location: Manager.java, Em-
ployee.java

ViewCatalogue: Intended for all users. Shows all registered video games and songs
to customers, managers, and employees. The views can be generated after filtering
as well (e.g., showing songs released in a specific year). Location: Employee.java,
Customer.java

RentItem: Allows customers to rent video games and songs. Responsible for check-
ing if the item is in stock, as well as if the customer has exceeded his/her maximum
limit of rentable items. For customers with different priority levels (regular customer,
silver member, gold member, platinum member), the maximum limit of items rented
at one point varies. Location: Customer.java

Payment: Allows customers to return and pay for the rented items. As a way to
reward the loyal members, the store gives credits, which can be used to rent items in
the future. Customers of different priority levels (silver, gold, platinum) get different
amounts of credits after returning every item (1,2, and 3 respectively). Customers
can use the accumulated credits to pay for items, 5 credits each. The feature also
allows customers to redeem discounts (10%, 15%, 25%) depending on their priority
level (silver, gold, platinum).Location: Customer.java

Feedback: Abstract feature allows customers to provide critique on their rented
items.

Ratings: Customers can rate games and songs they rented. Ratings range between
1 and 5, the higher the better. Items can only be reviewed by customers upon
returning them. Location: Customer.java

Review: Allows customers to provide textual feedback on their rented items. Re-
viewing is optional. Reviews can only be provided by customers upon returning a
rented item. Location: Customer.java

ExceptionHandling: Adds exceptions in all the methods dealing with user in-
put, and throws exceptions against invalid inputs, for example, NameEmptyEx-
ception (customer name not provided during registration) and NegativeSalaryEx-
ception (salary of less than 0 added for an employee by the manager). Location:
Utilities

Messaging: Allows customers to send messages to each other. Sets an empty inbox
against each customer, which is filled by the messages sent by other customers. Cus-
tomers can read the messages, which changes their status from unread to read. They
can also respond to messages and remove messages from their inbox. Location: Mes-
sage.java, Controller.java, Customer.java, CustomerSilver.java, CustomerGold.java,
CustomerPlatinum.java, Employee.java

Security: Allows employees to add passwords for customers when registering them.
Also responsible for checking if the entered passwords at the time of logging in
are correct but enhanced to automatically generate unique passwords for each new
registered customer. Location: Tools.java

DataLogging: Abstract feature allowing managers to read data from files and write
data back to files.

ImportData: Managers can import data into the system. Specifically, they can add
employees, games, songs, and customers from text files into the system. Location:
Manager.java, Controller.java

ExportData: Managers can export data to files. Specifically, they can write the
data of the registered employees, games, songs, and customers in text files. Location:
Manager.java, Controller.java

A.4 Scenarios - Tasks

Complete the TasksMake sure you take notes as you code while completing the
tasks. These notes will help you to answer the questionnaire once you have completed
all the tasks.

Warm-up scenario:

1. Add a new Feature Mapping named .feature-to-folder file within the Items
directory.

• Ensure that the feature Data is defined in the Feature Model using the
Feature Model View Window found at the bottom left.

• Map the feature Data into the new .feature-to-folder file to create its
mapping.

By completing these steps, you’ve successfully mapped the feature Data to the
Items directory.

2. Add a new Feature Mapping named .feature-to-file file within the IO
directory.

• Ensure that the feature Membership is defined in the Feature Model using
the Feature Model View Window found at the bottom left.

• Map the feature Membership to the file Controller.java into the new
.feature-to-file file to create its mapping.

By completing these steps, you’ve successfully mapped the feature Membership
to the file within the IO package.

3. Navigate all the usages of the feature Search using the Feature Model.

• To ensure exactly where the features have been annotated in the source code.
Use the Feature Model View Window at the bottom left, by right-clicking
on the feature Search and selecting the Find Usages.

By completing these steps, you’ve successfully found the feature Search used
in all places 6 results.

4. Adding a feature-to-code mapping.

• The feature Review is implemented in the Rentable() class. Your task is to
identify the corresponding code fragment and annotate it with the feature
Review.

Hint: You will need a begin and end annotation for the feature annotation.

Scenario 1: Task: Importing Data from Text Files

Task: Implementing ImportData Feature

Objective:

Your task is to add a new feature called DataLogging to the DARTPlus system,
specifically implementing the ImportData functionality. This feature will enable the
system to read data from the text file dartData.txt containing information about
employees, songs, games, and customers, and register them accordingly. Please note
that employees and customers have dedicated array lists (employees and customers),
whereas rentable items (songs and games) can be added to the same array list (i.e.,
items).

Integration Steps:

1. Feature Addition:

• Open the feature model of the DARTPlus system.

• Add a new feature DataLogging to the feature model.

• Create two sub-features under DataLogging named ImportData and ExportData.

2. Code Implementation and Annotation:

• Navigate to the class Manager in the directory Persons in the DARTPlus
source code.

• Implement a method named readFile () within the Manager class.

• Design the method to read data from a txt file (called dartData.txt) and
parse each line to extract relevant information about employees, songs,
games, and customers.

Note: The dartData.txt you can find in GitHub repository.

• Register the Employees in array list employees of type employee, Songs
and Games in Items of type Rentable, and Customers in the customers
of type Customer.

Help:
For file reading, you can use BufferedReader:

1 public void readFile(ArrayList<Employee> employees,
ArrayList<Customer> customers, ArrayList<Rentable> items,
Scanner input) {

→˓

→˓

2 try {
3 File dartData = new File("dartData.txt");
4 FileReader fr = new FileReader(dartData);
5 BufferedReader br = new BufferedReader(fr);
6 String line;
7

8 while((line = br.readLine()) != null) {
9 String[] dartInfo = line.split(";"); // parse data

10 //register employees, songs, and games based on the
first word of the line (employee, game, song)→˓

11

12 //For registering, use methods this.registerEmployee(),
items.add(new Game or Song), and customers.add()→˓

13 }
14 } catch (Exception var12) {
15 System.out.println("File does not exist");
16 }
17 }

• You are supposed to annotate the implemented code with embedded
feature annotations.

3. Menu Option Addition:

• Navigate the Controller class.

• Add a menu option for data importing in the manager’s menu options within
the Controller Class. For that, go to the managerLoggedIn() method
in the Controller class, and add a print statement adding a new option
System.out.println(“b. Import data from text file”);

• You are supposed to annotate the implemented code with embedded
feature annotations.

• Lastly, put a new case in the body of the managerLoggedIn() method that
calls the readFile method().

• You are supposed to annotate the implemented code with embedded
feature annotations.

Expected Outcome: By completing this task, you will enable the DARTPlus system
to import data from the text file, enhancing its functionality and data management
capabilities. Remember to annotate the code appropriately to maintain consistency
between the feature model and codebase.

Scenario 2: Task: Allowing Customers to also Rent Movies

Objective:

Clone the Song class to create a Movie class in the DARTPlus system. Add a
feature-to-file mapping for RentItem to Movie.java and implement the func-
tionality of renting movies. Details written below.

Tasks:

1. Clone a Song Class:

• Locate the Song class in the DARTPlus codebase.

• Clone the Song class to create a new class called Movie (in the same folder,
i.e., Items

• Within the Movie class, replace the artist with the director

2. Map the rentable items Games and Song, including the cloned file RentItem

3. Implement Movie Renting Functionality:

• Add a menu option for renting Item (movie) in the customerLoggedIn op-
tions within the Controller Class.

• Ensure that the implementation aligns with the existing rental functionality
for Games and Songs. By finding the usages of the RentItem feature in the
feature model View Window and updating the existing feature implemen-
tation to accommodate Movie rentals.

Expected Outcome:

• Feature-to-file mapping created and updated to include Movie.java for the
RentItem feature.

• Implementation of movie rental functionality within the Movie class, allowing
users to rent movies.

A.5 dartData.txt

For dartData text reading, the following data text was provided as a reference:

1 Employee;Dwight Schrute;1989;Abc Street;2000;2500
2 Song;Waka Waka;Shakira;2;2020
3 Game;Mario Bros;Platform;3;2018
4 Customer;Creed Bratton;abc123
5 Employee;Michael Scott;1990;Def Street;2100;2700
6 Song;Shape of You;Ed Sheeran;4;2017
7 Game;The Legend of Zelda;Adventure;5;2017
8 Customer;Angela Martin;password123
9 Employee;Pam Beesly;1992;Ghi Street;2200;2800

10 Song;Despacito;Luis Fonsi;6;2017
11 Game;Red Dead Redemption 2;Action-Adventure;7;2018
12 Employee;Jim Halpert;1995;Jkl Street;2300;2900
13 Customer;Kevin Malone;theoffice
14 Song;Old Town Road;Lil Nas X;8;2019
15 Game;The Witcher 3: Wild Hunt;RPG;9;2015
16 Employee;Stanley Hudson;1998;Mno Street;2400;3000
17 Song;Uptown Funk;Mark Ronson;10;2014
18 Customer;Kelly Kapoor;qwerty
19 Game;Overwatch;First-Person Shooter;11;2016

B Times for validating the accuracy of
the Logger tool.

To validate the accuracy of the Logger tool, it was necessary to extract the times-
tamps from each participant. These were then compared with the recorded videos
in order to present the initial results.

B.1 Participant 1:

Percentage of total spent time in Logger tool = 46161
1487297 × 100 = 3.1%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 5101 7000

.feature-to-file 1460 1000

.feature-to-file 6520 6000

.feature-to-file 13168 13000

.feature-to-folder - 1500

&block 8051 8000

Deleted &end 1260 1500

&block 8090 6000

Deleted &end 1361 1500

&line 3771 4000

Total Annotation time 46161 46500

Table B.1: Measured times for each of the annotations from the Logger and the
screencast for Participant 1.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 5101 7000 1899

.feature-to-file 21148 20000 1148

.feature-to-folder - 1500 1500

&block 18762 14000 4762

&line 3771 4000 229

Total
Annotation time

46161 46500 339

Table B.2: Measured times for each annotation type from the Logger and the screen-
cast for Participant 1.

B.2 Participant 2:

Percentage of total spent time in Logger tool = 75387
1767893 × 100 = 4.3%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 19656 20000

.feature-to-file 17609 17000

.feature-to-file 5174 5000

.feature-to-file 5222 5000

.feature-to-folder 293 300

.feature-to-folder 601 500

&block 9913 10000

&block 8082 8000

&line 8837 10000

Total Annotation time 75387 75800

Table B.3: Measured times for each of the annotations from the Logger and the
screencast for Participant 2.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 19656 20000 344

.feature-to-file 28005 27000 1005

.feature-to-folder 894 800 94

&block 17995 18000 5

&line 8837 10000 1163

Total
Annotation time

75387 75800 413

Table B.4: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 2.

B.3 Participant 3:

Percentage of total spent time in Logger tool = 102708
3773677 × 100 = 2.7%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 2179 3000

.feature-model 13307 13000

.feature-model 19368 23000

.feature-model 14182 15000

.feature-to-file 7685 7000

.feature-to-file 14175 13000

.feature-to-file 29599 27000

.feature-to-file 1634 1000

.feature-to-folder 216 300

.feature-to-folder 363 500

Deleted &block - 10000

Deleted &block - 1000

Deleted &block - 8000

Deleted &block - 1000

Deleted &block - 3000

Deleted &block - 2000

Deleted &line - 2000

Total Annotation time 102708 102800

Table B.5: Measured times for each of the annotations from the Logger and the
screencast for Participant 3.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 49036 54000 4964

.feature-to-file 53093 48000 5093

.feature-to-folder 579 800 221

&block 20271 25000 4729

&line - 14000 14000

Total
Annotation time

102708 102800 92

Table B.6: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 3.

B.4 Participant 4:

Percentage of total spent time in Logger tool = 132678
1285628 × 100 = 10.3%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 11234 11000

.feature-to-file 2330 3000

.feature-to-file 745 500

.feature-to-file 3475 4000

.feature-to-file 22967 18000

.feature-to-folder 503 900

&block 8105 9000

Deleted &begin 3789 4000

&block 5271 10000

&block 2203 2000

&block 21652 15000

Deleted &end 1064 1500

&block 13678 12000

&block 14165 -

&block 5568 6000

&line 12671 12500

&line 8111 8500

Total Annotation time 132678 112400

Table B.7: Measured times for each of the annotations from the Logger and the
screencast for Participant 4.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 11234 11000 234

.feature-to-file 29517 25500 4017

.feature-to-folder 503 900 397

&block 75375 54000 21375

&line 20782 21000 218

Total
Annotation time

132678 112400 20278

Table B.8: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 4.

B.5 Participant 5:

Percentage of total spent time in Logger tool = 81510
3812627 × 100 = 2.1%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 4885 4000

.feature-model 10465 9000

.feature-to-file 5658 6000

.feature-to-file 31236 32000

.feature-to-folder 1526 2000

Deleted &begin 1809 2000

&block 12098 12000

&block 9465 4000

&block 6177 6000

Deleted &end 1237 2000

Total Annotation time 81510 75000

Table B.9: Measured times for each of the annotations from the Logger and the
screencast for Participant 5.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 15350 13000 2350

.feature-to-file 36894 38000 1106

.feature-to-folder 1526 2000 474

&block 30786 22000 8786

&line - - -

Total
Annotation time

81510 75000 6510

Table B.10: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 5.

B.6 Participant 6:

Percentage of total spent time in Logger tool = 110945
3110786 × 100 = 3.6%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 987 1000

.feature-model 24816 26000

.feature-to-file 9167 8000

.feature-to-file 11955 6000

.feature-to-file 5286 6500

.feature-to-file 8102 10000

.feature-to-file 9338 5000

.feature-to-file 4431 5000

.feature-to-file 4966 6000

.feature-to-file 19941 20000

.feature-to-folder 358 800

&block - -

Deleted &begin 772 700

&block 11598 10000

&line - 4000

Total Annotation time 110945 108300

Table B.11: Measured times for each of the annotations from the Logger and the
screencast for Participant 6.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 25803 27000 1197

.feature-to-file 73186 66500 6686

.feature-to-folder 358 800 442

&block 12370 10000 2370

&line - 4000 4000

Total
Annotation time

110945 108300 2645

Table B.12: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 6.

B.7 Participant 7:

Percentage of total spent time in Logger tool = 63820
3115269 × 100 = 2.04%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 16017 16000

.feature-to-file 4267 4500

.feature-to-file 3634 4300

.feature-to-file 3540 4000

.feature-to-file 3831 3500

.feature-to-folder 334 500

.feature-to-folder 21535 22000

&block 10662 8500

Total Annotation time 63820 63300

Table B.13: Measured times for each of the annotations from the Logger and the
screencast for Participant 7.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 16017 16000 17

.feature-to-file 15272 16300 928

.feature-to-folder 21869 22500 631

&block 10662 8500 2162

&line - - -

Total
Annotation time

63820 63300 520

Table B.14: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 7.

B.8 Participant 8:

Percentage of total spent time in Logger tool = 58522
1378505 × 100 = 4.2%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 8845 11000

.feature-to-file 8333 9500

.feature-to-file 24135 23500

.feature-to-folder 546 700

Deleted &end 2206 2000

&block 16625 16000

&block - -

&block 38 300

&line - -

&line - -

Total Annotation time 58522 61000

Table B.15: Measured times for each of the annotations from the Logger and the
screencast for Participant 8.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 8845 11000 2155

.feature-to-file 32468 33000 532

.feature-to-folder 546 700 154

&block 18869 16300 2569

&line - - -

Total
Annotation time

58522 61000 2478

Table B.16: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 8.

B.9 Participant 9:

Percentage of total spent time in Logger tool = 222101
5787350 × 100 = 3.8%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 14184 18000

.feature-to-file 8953 8000

.feature-to-file 20772 20000

.feature-to-file 15568 15000

.feature-to-file 6429 7000

.feature-to-file 19680 11000

.feature-to-file 36747 16000

.feature-to-folder 6358 5500

&block 2017 2000

&block 9992 10000

&block 2593 2000

Deleted &end 1233 1000

&block 17168 14000

Deleted &begin 8257 10000

Deleted &end 302 -

&block 28286 15000

Deleted &begin 4581 -

Deleted &begin 15294 -

&block 442 -

&block 10743 12000

Deleted &begin 1018 1000

Deleted &end 424 -

&block 5538 2000

Deleted &end 999 500

&block 16631 1000

&block - 1000

Total Annotation time 254209 132500

Table B.17: Measured times for each of the annotations from the Logger and the
screencast for Participant 9.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 14184 18000 3816

.feature-to-file 108149 50000 58149

.feature-to-folder 6358 5500 858

&block 125518 59000 66518

&line - - -

Total
Annotation time

254209 132500 121709

Table B.18: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 9.

B.10 Participant 10:

Percentage of total spent time in Logger tool = 69375
3594069 × 100 = 1.9%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model - -

.feature-model - -

.feature-model - -

.feature-to-file 7778 6000

.feature-to-file 23569 23500

.feature-to-folder 3482 1500

.feature-to-folder 2844 3000

&block 10346 9500

&block 10628 12000

&block 10728 11000

&line - 5000

&line - 4800

&line - 4000

Total Annotation time 69375 80300

Table B.19: Measured times for each of the annotations from the Logger and the
screencast for Participant 10.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model - - 0

.feature-to-file 31347 29500 1847

.feature-to-folder 6326 4500 1826

&block 31702 32500 798

&line - 13800 13800

Total
Annotation time

69375 80300 10925

Table B.20: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 10.

B.11 Participant 11:

Percentage of total spent time in Logger tool = 77796
1856612 × 100 = 4.2%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 24069 23000

.feature-to-file 3753 4000

.feature-to-file 18054 17200

.feature-to-folder 2756 2200

&block 7759 10000

&block 5866 9000

&block 7014 7500

Deleted &begin 2248 3000

&block 8525 -

&line - 5000

Deleted &line 6314 -

Total Annotation time 86358 77900

Table B.21: Measured times for each of the annotations from the Logger and the
screencast for Participant 11.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 24069 23000 1069

.feature-to-file 21807 21200 607

.feature-to-folder 2756 2200 556

&block 31412 26500 4912

&line 6314 5000 1314

Total
Annotation time

77796 77900 104

Table B.22: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 11.

B.12 Participant 12:

Percentage of total spent time in Logger tool = 85826
1706352 × 100 = 5.02%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 25263 13000

.feature-to-file 4402 5000

.feature-to-file 10919 11250

.feature-to-folder 3709 4000

.feature-to-folder 7419 7000

&block 9337 10000

Deleted &end 2907 1000

&block 3948 4500

&line 5216 5000

&line 6941 7400

&line 4220 4750

&line 2775 4000

Deleted &end - 1000

&line 1677 2750

Total Annotation time 85826 78650

Table B.23: Measured times for each of the annotations from the Logger and the
screencast for Participant 12.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 25263 13000 12263

.feature-to-file 15321 16250 929

.feature-to-folder 11128 11000 128

&block 16192 14500 1692

&line 20829 23900 821

Total
Annotation time

85826 78650 7176

Table B.24: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 12.

B.13 Participant 13:

Percentage of total spent time in Logger tool = 80401
2427531 × 100 = 3.3%

Type Logger Time in (ms) ScreenCast Time in (ms)

.feature-model 13672 13400

.feature-to-file 3032 3400

.feature-to-file 14933 15300

.feature-to-folder 451 465

Deleted &end 3903 4000

&block 12826 13000

Deleted &end 1786 3000

&block 15944 16600

&block 4548 4700

&line 14995 15500

Total Annotation time 80401 82365

Table B.25: Measured times for each of the annotations from the Logger and the
screencast for Participant 13.

Type Logger Time in
(ms)

ScreenCast Time in
(ms)

Difference in (ms)

.feature-model 13672 13400 272

.feature-to-file 17965 18700 735

.feature-to-folder 451 465 14

&block 39007 34300 4707

&line 14995 15500 505

Total
Annotation time

80401 82365 1964

Table B.26: Total of the measured times for each type of annotation from the Logger
and the screencast, including the difference time for Participant 13.

C Effort for annotating including the
navigating time.

C.1 Participant 1:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total Time (ms)

.feature-model 7000 2500 9500

.feature-to-file 1000 4000 5000

.feature-to-file 6000 2000 8000

.feature-to-file 13000 2300 15300

.feature-to-folder 1500 2000 3500

&block 8000 6500 14500

&block 6000 1700 7700

&line 4000 3500 7500

Total Time 46500 24500 71000

Table C.1: Measured times for each annotation in the screencast and navigation time
for Participant 1.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 7000 2500 9500

.feature-to-file 20000 8300 28300

.feature-to-folder 1500 2000 3500

&block 14000 8200 22200

&line 4000 3500 7500

Total Time 46500 24500 71000

Table C.2: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and naviga-
tion time counted for Participant 1.

C.2 Participant 2:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 20000 2000 22000

.feature-to-file 17000 1500 18500

.feature-to-file 5000 1600 6600

.feature-to-file 5000 2200 7200

.feature-to-folder 300 500 800

.feature-to-folder 500 1000 1500

&block 10000 21800 31800

&block 8000 4000 12000

&line 10000 7200 17200

Total time 75800 41800 117600

Table C.3: Measured times for each annotation in the screencast and navigation time
for Participant 2.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 20000 2000 22000

.feature-to-file 27000 5300 32300

.feature-to-folder 800 1500 2300

&block 18000 25800 43800

&line 10000 7200 17200

Total Time 75800 41800 117600

Table C.4: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and naviga-
tion time counted for Participant 2.

C.3 Participant 3:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 3000 4600 7600

.feature-model 13000 2200 15200

.feature-model 23000 2600 25600

.feature-model 15000 500 15500

.feature-to-file 7000 2000 9000

.feature-to-file 13000 1100 14100

.feature-to-file 27000 1900 28900

.feature-to-file 1000 2500 3500

.feature-to-folder 300 1800 2100

.feature-to-folder 500 1600 2100

Total time 102800 20800 123600

Table C.5: Measured times for each annotation in the screencast and navigation time
for Participant 3.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 54000 9900 63900

.feature-to-file 48000 7500 55500

.feature-to-folder 800 3400 4200

&block - - -

&line - - -

Total Time 102800 20800 123600

Table C.6: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and naviga-
tion time counted for Participant 3.

C.4 Participant 4:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 11000 5000 16000

.feature-to-file 3000 1700 4700

.feature-to-file 500 2500 3000

.feature-to-file 4000 1000 5000

.feature-to-file 18000 9000 27000

.feature-to-folder 900 3000 3900

&block 9000 16200 25200

&block 10000 3000 13000

&block 2000 17600 19600

&block 15000 4600 19600

&block 12000 3500 15500

&block 6000 500 6500

&line 12500 7500 20000

&line 8500 1000 9500

Total time 112400 76100 188500

Table C.7: Measured times for each annotation in the screencast and navigation time
for Participant 4.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 11000 5000 16000

.feature-to-file 25500 14200 39700

.feature-to-folder 900 3000 3900

&block 54000 45400 99400

&line 21000 8500 29500

Total Time 112400 76100 188500

Table C.8: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and naviga-
tion time counted for Participant 4.

C.5 Participant 5:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 4000 6400 10400

.feature-model 9000 2000 11000

.feature-to-file 6000 3600 9600

.feature-to-file 32000 9300 41300

.feature-to-folder 2000 2600 4600

&block 12000 12500 24500

&block 4000 3500 7500

&block 6000 3700 9700

Total time 75000 43600 118600

Table C.9: Measured times for each annotation in the screencast and navigation time
for Participant 5..

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 13000 8400 21400

.feature-to-file 38000 12900 50900

.feature-to-folder 2000 2600 4600

&block 22000 19700 41700

&line - - -

Total Time 75000 43600 118600

Table C.10: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 5.

C.6 Participant 6:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 1000 6900 7900

.feature-model 26000 500 26500

.feature-to-file 8000 4250 12250

.feature-to-file 6000 8300 14300

.feature-to-file 6500 12000 18500

.feature-to-file 10000 500 10500

.feature-to-file 5000 1600 6600

.feature-to-file 5000 4700 9700

.feature-to-file 6000 500 6500

.feature-to-file 20000 400 20400

.feature-to-folder 800 4200 5000

&block 10000 21900 31900

&line 4000 7500 11500

Total time 108300 73250 181550

Table C.11: Measured times for each annotation in the screencast and navigation
time for Participant 6

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 27000 7400 34400

.feature-to-file 66500 32250 98750

.feature-to-folder 800 4200 5000

&block 10000 21900 31900

&line 4000 7500 11500

Total Time 108300 73250 181550

Table C.12: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 6

C.7 Participant 7:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 16000 15500 31500

.feature-to-file 4500 2300 6800

.feature-to-file 4300 300 4600

.feature-to-file 4000 1000 5000

.feature-to-file 3500 5200 8700

.feature-to-folder 500 4000 4500

.feature-to-folder 22000 2300 24300

&block 8500 45000 53500

Total Time 63300 75600 138900

Table C.13: Measured times for each annotation in the screencast and navigation
time for Participant 7.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 16000 15500 31500

.feature-to-file 16300 8800 25100

.feature-to-folder 22500 6300 28800

&block 8500 45000 53500

&line - - -

Total Time 63300 75600 138900

Table C.14: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 7.

C.8 Participant 8:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 11000 64700 75700

.feature-to-file 9500 3900 13400

.feature-to-file 23500 21200 44700

.feature-to-folder 700 2000 2700

&block 16000 42500 58500

&block 300 5500 5800

Total Time 61000 139800 200800

Table C.15: Measured times for each annotation in the screencast and navigation
time for Participant 8.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 11000 64700 75700

.feature-to-file 33000 25100 58100

.feature-to-folder 700 2000 2700

&block 16300 48000 64300

&line - - -

Total Time 61000 139800 200800

Table C.16: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 8.

C.9 Participant 9:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 18000 2000 20000

.feature-to-file 8000 5300 13300

.feature-to-file 20000 7000 27000

.feature-to-file 15000 2500 17500

.feature-to-file 7000 4300 11300

.feature-to-folder 5500 2800 8300

&block 2000 13400 15400

&block 10000 15700 25700

&block 2000 3500 5500

&block 14000 32100 46100

&block 15000 5300 20300

&block 12000 2400 14400

&block 2000 5200 7200

&block 1000 6300 7300

&block 1000 3000 4000

Total time 132500 110800 243300

Table C.17: Measured times for each annotation in the screencast and navigation
time for Participant 9.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 18000 2000 20000

.feature-to-file 50000 17100 67100

.feature-to-folder 5500 2800 8300

&block 59000 86900 145900

&line - - -

Total Time 132500 108800 241300

Table C.18: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 9.

C.10 Participant 10:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-to-file 6000 3500 9500

.feature-to-file 23500 5500 29000

.feature-to-folder 1500 5800 7300

.feature-to-folder 3000 2000 5000

&block 9500 28000 37500

&block 12000 5500 17500

&block 11000 2700 13700

&line - - -

&line 5000 7000 12000

&line 4800 5900 10700

&line 4000 1400 5400

Total time 80300 67300 147600

Table C.19: Measured times for each annotation in the screencast and navigation
time for Participant 10.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model - - -

.feature-to-file 29500 9000 38500

.feature-to-folder 4500 7800 12300

&block 32500 36200 68700

&line 13800 14300 28100

Total Time 80300 67300 147600

Table C.20: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 10.

C.11 Participant 11:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 23000 6000 29000

.feature-to-file 4000 7600 11600

.feature-to-file 17200 4900 22100

.feature-to-folder 2200 6000 8200

&block 10000 23600 33600

&block 9000 1700 10700

&block 7500 4700 12200

&line 5000 1300 6300

Total Time 77900 55800 133700

Table C.21: Measured times for each annotation in the screencast and navigation
time for Participant 11.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 23000 6000 29000

.feature-to-file 21200 12500 33700

.feature-to-folder 2200 6000 8200

&block 26500 30000 56500

&line 5000 1300 6300

Total Time 77900 55800 133700

Table C.22: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 11.

C.12 Participant 12:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 13000 5500 18500

.feature-to-file 5000 2000 7000

.feature-to-file 11250 9700 20950

.feature-to-folder 4000 3700 7700

.feature-to-folder 7000 1000 8000

&block 10000 34500 44500

&block 4500 7000 11500

&line 5000 2300 7300

&line 7400 7900 15300

&line 4750 1200 5950

&line 4000 1400 5400

&line 2750 1000 3750

Total Time 78650 77200 155850

Table C.23: Measured times for each annotation in the screencast and navigation
time for Participant 12

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 13000 5500 18500

.feature-to-file 16250 11700 27950

.feature-to-folder 11000 4700 15700

&block 14500 41500 56000

&line 23900 13800 37700

Total Time 78650 77200 155850

Table C.24: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 12.

C.13 Participant 13:

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 13400 6000 19400

.feature-to-file 3400 600 4000

.feature-to-file 15300 10000 25300

.feature-to-folder 465 1000 1465

&block 13000 33700 46700

&block 16600 4900 21500

&block 4700 2700 7400

&line 15500 6500 22000

Total Time 82365 65400 147765

Table C.25: Measured times for each annotation in the screencast and navigation
time for Participant 13.

Type Annotation Time in
(ms)

Navigation Time in
(ms)

Total A+N Time in
(ms)

.feature-model 13400 6000 19400

.feature-to-file 18700 10600 29300

.feature-to-folder 465 1000 1465

&block 34300 41300 75600

&line 15500 6500 22000

Total Time 82365 65400 147765

Table C.26: Total of measured times for each type of annotation performed on the
screencast, including navigation time, with total annotation and navi-
gation time counted for Participant 13.

D Questionnaire Form

E Questionnaire Responses

User Study of Using the HAnS Tool for Writing Embedded Feature An-
notations

In summary, 13 participants provided responses to the questionnaire.

These responses are provided below, as they could not be included in the results
section due to the scope of the questionnaire.

	Introduction
	Motivation
	Related Work
	Contribution
	Organization of the Thesis

	Background
	Feature
	Embedded Feature Annotations
	HAnS (Helping Annotate Software)
	Feature model
	Feature-to-file mapping
	Feature-to-folder mapping
	Feature-to-code mapping

	Logger Tool
	The JetBrains IntelliJ IDE Support Platform
	Feature-Oriented Software Development and Evolution

	Methodology
	Experimental Design
	Research Questions
	Experimental Setup
	Subject System Introduction
	Tasks Design
	HAnS Tutorial Introduction
	HAnS and Logger Tools Setup Guidelines

	Participants
	Participant Selection Criteria
	Recruitment Process

	Procedure of the Experimental Study
	Preparation Phase
	Pilot Study
	Execution Phase

	Data Collection
	Quantitative Data
	Qualitative Data

	Data Analysis
	Limitations and Challenges

	Results
	RQ1: Accuracy
	RQ2: Effort
	Effort of using embedded feature traceability annotations during development and the effort of recording annotations
	Effort of editing and removing annotations
	Effort required for navigation and annotation

	Participants Knowledge
	RQ3: Participants Perceptions
	RQ3.1: How difficult was it to decide when to add annotations?
	RQ 3.2: How difficult was it to decide where to add annotations?
	What do you think are the benefits of embedded feature traceability annotations?
	In your opinion, what are the advantages of browsing embedded feature traceability annotations?
	How intuitive is it to browse embedded feature traceability annotations?
	How would you rate the usability of using embedded feature traceability annotations?
	The process of adding annotations enhances my understanding of the codebase.

	RQ4: Experience and Benefits
	What do you think are the benefits of the HAnS tool?
	Technical issues or bugs encountered with the HAnS tool
	Suggestions for improvement:
	Experience with the HAnS tool

	RQ5: Alignment of Developers’ Experience and Understanding with their Mental Model

	Discussion
	Discrepancies in Total Development Time
	Inconsistencies in Total Annotation Time
	Differences in Block and Line Annotations
	Unaccounted Block and Line Annotations
	Effort in Navigating and Annotating
	Experimental Execution Times
	User Perception and Qualitative Insights

	Threats to Validity
	Conclusion
	List of Figures
	List of Tables
	Bibliography
	Experiment Materials
	HAnS Tutorial Introduction
	Installation Guidelines for the HAnS Plugin and Logger Tool.
	DARTPlus Subject System Features
	Scenarios - Tasks
	dartData.txt

	Times for validating the accuracy of the Logger tool.
	Participant 1:
	Participant 2:
	Participant 3:
	Participant 4:
	Participant 5:
	Participant 6:
	Participant 7:
	Participant 8:
	Participant 9:
	Participant 10:
	Participant 11:
	Participant 12:
	Participant 13:

	Effort for annotating including the navigating time.
	Participant 1:
	Participant 2:
	Participant 3:
	Participant 4:
	Participant 5:
	Participant 6:
	Participant 7:
	Participant 8:
	Participant 9:
	Participant 10:
	Participant 11:
	Participant 12:
	Participant 13:

	Questionnaire Form
	Questionnaire Responses

