RUHR-UNIVERSITAT BOCHUM

Extending IDE-based editing support for embedded
feature annotations with a recommender system

Maurice Beintmann

Bachelors's Thesis — October 28, 2025
Chair of Software Engineering.

Supervisor: Prof. Dr. Thorsten Berger
Advisor: Kevin Hermann, M.Sc.

RUB ®-e | Faculty of
. o Computer
® @ | Science

@

Contents

1 Introduction
1.1 Motivation e
1.2 Research Questions

2 Background

2.1 Features e e
2.2 Feature Traceability
2.3 Embedded Feature Annotations
24 The HAnS Plugin.
2.5 FeatRacer e

3 Related Work

4 Methodology

4.1 Development
4.1.1 FeatRacer
4.1.2 HAnS Extension

4.2 Usability Study
4.21 Setup
4.2.2 Tasks
423 Analysis

5 Implementation

5.1 FeatRacerAPI
51.1 Data Storage
5.1.2 Dependency Management
5.1.3 Interfaceo

5.2 HAnS-FeatRacer Extension
5.2.1 Classifier Integration
5.2.2 Recommendation View
5.2.3 Imitialization
5.2.4 Commit Watcher

6 Usability Study Results

7 Discussion
7.1 Implications

[NCR

N O UL W W

viii

7.2 Threats to Validity

8 Conclusion
Bibliography

List of Figures
List of Tables

A Questionnaire

Contents

39
41
45
46

47

1 Introduction

1.1 Motivation

Features are a key concept in modern software development to represent the dis-
tinct functionalities of a software system [4]. They specify and manage the differ-
ent parts of a software system to support developers in comprehending, reusing,
or changing the system [15]. While developers may document a list of features
that a software system contains, the location of those features is often not docu-
mented [21].

Feature location recovery is a common and time-consuming activity for developers,
especially when features were implemented a long time ago, possibly by a developer
who already left the organization, or when the feature has code spread across mul-
tiple packages, files, or code fragments [28, 24, 32]. The recovery therefore imposes
a considerable overhead before developers can complete their tasks, such as fixing
bugs or changing different aspects of a feature. This poses the challenging issue of
how traceability between features and their corresponding software assets can be
effectively maintained.

To address this feature traceability challenge, there are two main approaches: In
the lazy strategy, the feature locations are retroactively recovered when they are
required. This process relies on manual or automated feature location recovery
techniques. However, manual feature location recovery is a laborious and error-
prone process [32], and while several automated feature location recovery tech-
niques have been proposed, they often require large training datasets, produce
too many false-positives for effective usage in production, and recover only coarse-
grained feature locations [25, 28]. In practice, features are more fine-grained enti-
ties [17].

The eager strategy asks developers to explicitly record traceability information dur-
ing the development phase, when the knowledge of a feature is still fresh in the
mind of the developer. For this purpose, feature information can be documented
externally, for example in a feature traceability database like FEAT [27]. Alterna-
tively it can be stored internally by embedding it directly into the software assets via
embedded feature annotations [13, 29]. Although continuous recording will save a
substantial amount of feature location recovery cost in the long-term [13], providing
short-term benefits to developers has been identified as a crucial criterion in estab-
lishing feature traceability [19]. Developers might also forget to record and as a result

2 1 Introduction

some feature locations may not be traced and aforementioned techniques are needed
to recover their locations. The natural evolution of code can also cause preexisting
feature location recordings to become inconsistent.

FeatRacer has been proposed to nudge developers towards a better documentation of
their features by predicting when the developer forgets to annotate new code with a
feature [21]. A study by Brown and Parnin [9] has shown that nudging techniques are
effective in changing the behavior of software developers. To effectively incorporate
FeatRacer into the developer’s workflow, integration into mainstream tooling, such
as IDE’s or a version control system such as Git, is essential. This integration
ensures that FeatRacer can automatically notify developers directly within their
existing workflow, thus eliminating the need to switch between tools and minimizing
disruptions to productivity [22].

1.2 Research Questions

To deal with the identified challenges and improve current feature traceability prac-
tices, we pose two research questions. The first question is "How can a recommender
system be integrated into an IDE plugin to provide support in maintaining feature
traceability?". To answer this, we want to incorporate FeatRacer into the develop-
ment workflow by providing tool support within an IDE. The aim is to integrate
FeatRacer into the HAnS plugin for the IntelliJ IDE. This will increase the workflow
efficiency for feature traceability by automatically triggering FeatRacer upon each
version control commit.

To evaluate the effectiveness of the implementation, we formulate the second re-
search question: "What is the impact of the integration on usability during feature
traceability tasks?'. A usability study is conducted to determine the effectiveness of
the plugin integration. In this study, the participants will perform a series of tasks
designed to explore the plugin’s functionalities. To evaluate the effectiveness, we
record task completion times and measure the degree of correctness. Additionally,
participants provide feedback through a questionnaire.

2 Background

2.1 Features

Features are high-level labels assigned to distinct and well-understood aspects of a
software system. They are used to describe, manage, and communicate the differ-
ent functional and non-functional elements within those systems. This abstraction
supports different stakeholders with the communication and understanding of the
underlying system’s characteristics [4, 15, 2].

| ClaferMooVisualizer |

)
\ CLIENT |
help_getter.js md_input.js O/\O
B —nput) | PROCESSMANAGEMENT | [viEws |

Q \O o)
TIMEOUT POLLING CLAFERMODEL

md_clafermodel.js

Figure 2.1: Example of feature scattering across multiple files in a codebase [21]

A fundamental characteristic of them is their cross-cutting nature, where individual
features often span through multiple subsystems, files, or code fragments [23]. An
example of this is illustrated in Figure 2.1, where the code fragments from the
features timeout and polling are distributed across different parts of the codebase,
with each feature’s location marked in distinct colors. Notably, both help_ getter.js
and md__input.js contain code fragments belonging to both features and therefore
demonstrate how multiple features scatter within the same file. This scattering
presents significant challenges for maintenance and evolution, motivating the need
for effective feature traceability approaches.

4 2 Background

2.2 Feature Traceability

Feature Traceability refers to the practice of being able to establish a relationship
between software assets and the features implemented by those assets. It is im-
perative to possess a comprehensive understanding of this relationship in order to
effectively evolve, reuse, or change features [13, 18]. To address the traceability
of features, there are two main strategies: The eager strategy and the lazy strat-

egy.

In the lazy strategy the feature traceability information is not documented up-
front and instead retroactively recovered when required. This recovery can be done
manually, for example, through exploration of the source code, executing the appli-
cation and triggering the feature, or by writing test cases that utilize the feature.
(32, 16].

Automated feature location recovery follows a different approach. Instead of manual
feature location recovery, they return a ranked list of files and methods, which is
considered an implementation of the feature. The developer is then able to evalu-
ate those candidates. Those techniques can further be classified as either static or
dynamic [28]. Static techniques conventionally act as a search engine and prompt
the developer for terms that specify what to search for in the code. This is usu-
ally done with the help of information retrieval techniques such as LSI and tf-idf
[26], or machine learning [10]. Dynamic techniques monitor the execution stack
trace, typically with the use of a given test case that has been written by the devel-
oper.

While the lazy strategy requires no upfront overhead in the development phase, it
generates substantial effort in the recovery of feature locations in the later stages
of a project. This recovery process itself is often costly, time-consuming, and error-
prone. A survey by Wang et al. [32] observes an average of 15 minutes for fea-
ture location using a manual approach in systems with 73.000 lines of code or
less.

Automated feature location recovery techniques come with their own set of addi-
tional challenges. They are often resource-intensive, difficult to set up, and have
low precision and recall that is highly dependent on the prompt given by the de-
veloper [28, 25, 14]. Additionally, only coarse-grained feature locations can be re-
covered using automated techniques, while features are often fine-grained in prac-
tice [17].

The eager strategy involves the recording of feature traceability information during
the development process [13]. It requires developers to explicitly document features
and their location when the knowledge is still fresh in the mind of the developer. For
this purpose feature information can be documented externally, for example with
a feature traceability database like FEAT [27]. An alternative approach is to store

2.3 Embedded Feature Annotations 5

feature information internally by embedding annotations directly into the software
assets [13].

Although continuous recording of feature traceability information will provide long-
term benefits, it requires additional attention from the developer during the develop-
ment process [7, 6, 12]. Developers might also forget to record features and their loca-
tions, alike developers not always commenting code during the development. As a re-
sult the locations of some features might need to be recovered.

2.3 Embedded Feature Annotations

file structure feature model
ClaferMooVisualiser ClaferMooVisualiser
.git/ client
Server/ @ Mdaient 1 helpSystem
Client/ client 17‘ icons
.feature-folder views
feature-files input
Commons/ \@ md_input.js clafermodel
hdelpfgetter.js input, control l7| control
md_input.js jquery
md_clafermodel.js processManagement
d trol.j i
Images/ . ——__[@® //&dine [polling, timeout] gPolling
this.pollingTimeoutObject = null | —[7
() folder mapping //&begin [polling]
; : ...Control.method("onPoll"
fil L
@ e mapping) function(responseObject)...
@ fragment mapping //&end [polling]

Figure 2.2: Example of embedded feature annotations for folder(1), file(2), and frag-
ment(3) mapping

Embedded feature annotations can be utilized to implement the eager strategy in
retaining feature traceability. This approach intends to embed the traceability
information directly within the source code in the form of structured comments.
Compared to other approaches, embedded annotations are lightweight and research
suggests that it can substantially reduce feature location recovery costs [13]. A stan-
dardized notation for embedded feature annotations has been proposed by Schwarz
et al. [29].

In their model, all features are organized in the feature-model file. Each feature is
cataloged in its own line within the file, with the first line being the project name.
The hierarchy of features is represented with tab-indentation within the file. To
reference these features, the shortest possible unique path in the hierarchy is used,
with "::" being used to conjoin the feature names.

Figure 2.2 shows an example of using embedded feature annotations. Code assets
can be mapped to features on a folder, file, or code fragment level. Fragments and
single lines are annotated with embedded code annotations in the form of comments.
Developers annotate the asset with a comment, followed by an ampersand, and a
keyword, which differs for fragment and line annotations. The features are then

6 2 Background

written in square brackets after this keyword and separated with commas for multiple
features.

To map a folder or file, the developer adds another file named .feature-to-folder or
.feature-to-file to the relevant folder. The .feature-to-folder file lists features in indi-
vidual lines, while the .feature-to-file file works in pairs of two lines. The first line de-
fines the file name of the file that is mapped, and the succeeding line lists the features,
separated with commas, that are associated with that file.

2.4 The HAnRS Plugin

HAnS (Helping Annotate Software) is a plugin for the IntelliJ IDE that supports
developers in maintaining feature traceability with embedded feature annotations
(see section 2.3) [20]. The plugin provides code completion and syntax highlight-
ing for embedded feature annotations. Furthermore, HAnS also provides a feature
browser for developers to browse through feature locations, as well as the option to
refactor rename or delete features.

Figure 2.3: Overview of the HAnS plugin [20]

Figure 2.3 shows an overview of the HAnS plugin in action. In the main editor
window, the line and block annotations are highlighted with colors. The side panel
on the left-hand side has a browser displaying the feature model in a hierarchical
manner. The selected feature food has all its occurrences listed in the search window
below. Those occurrences can then be selected to display a new editor window at
that location, as shown in the bottom right.

2.5 FeatRacer 7

2.5 FeatRacer

The FeatRacer technique has been proposed by Mukelabai et al. [21] to assist de-
velopers with the proactive and continuous recording of feature locations using
embedded feature annotations. Although the FeatRacer technique could possibly
work using external databases and other traceability strategies, the designers of
FeatRacer chose embedded annotations due to their advantages over alternative so-
lutions (see section 2.3) [21]. FeatRacer can be adopted at any point during the
project’s lifecycle, although ideally embedded annotations are adopted from the
project start.

FeatRacer works with a recommender system, which should be triggered after a com-
mit or a similar event that marks a significant step in software evolution. When it is
triggered, it analyzes the assets from the changeset that do not have any feature an-
notation. Developers are informed when it predicts that they failed to annotate parts
of the new source code with a specific feature. The predictions are made based on the
project history and the assets that were previously annotated, on which FeatRacer
learns. When this prediction is made, a ranked list of feature recommendations is
returned. From this list the developer can choose whether to adopt a given recom-
mendation and if they do, the specific asset is annotated with the chosen feature and
the changes are committed to the version control system.

Metric Description

CSDEV Avera.ge (?osine similarity between names of distinct developers
contributing to a

DDEV Number of distinct developers contributing to a

DCONT Average percentage of lines contributed to a per developer

HDCONT Perce'ntag'e of lines contributed by the developer with the highest
contribution to a

COMM Amount of commits in which a has been modified

CCC Total number of assets modified in the ¢ alongside a

ACCC Average number of assets modified alongside a in C

DNFMA N.umbe.r of distinct features mapped to all assets modified together
with a in C

NFMA Number of features modified with a in ¢

NLOC Lines of code associated with a in ¢

NFF Number of features within file that contains a in ¢

Table 2.1: Metrics used by FeatRacer where a be an asset modified in commit ¢, with
C being the set of all commits up to ¢ where a has been modified [21]

Internally, when FeatRacer is invoked, it analyzes the commit history of the project
to collect all assets and the mapping of a specific asset to declared features, if feature
annotations exist for that asset. For this data, metrics are calculated for each asset,

8 2 Background

including aspects such as the number of developers that contributed to that asset
or the number of commits that have modified that specific asset. A full list of asset
metrics can be found in Table 2.1.

Afterwards, FeatRacer utilizes a machine-learning algorithm to build a machine-
learning model using the data collected in prior steps. If the latest commit changeset
includes assets without annotations, it uses the model to find recommendations for
feature annotations that the developer forgot to annotate.

3 Related Work

Feature location encompasses a wide variety of techniques. A survey by Rubin and
Chechik [28] identified 24 distinct techniques, highlighting the breadth of research
in this area. Given this high amount of approaches, this chapter aims to provide
an overview of techniques and tools that are most closely related to FeatRacer and
HAnS.

TAFT

The Feature Tagging Approach (TAFT) was developed by Seiler and Paech [30],
aiming to document feature knowledge continuously with the use of Feature Tags.
At its core, it utilizes Java’s annotation tag system with a @Feature("x") annota-
tion in front of the relevant fragment. The tag has a description associated is used
to provide a general specification of the feature. It can optionally have a require-
ment, which is defined as a specification that refines the feature, or a work item,
which describes the development effort needed to implement the feature. Figure 3.1
displays an example for the full specification of the feature "Transportation" and an
example of a feature annotation in Java code.

Feature: Integration of an API to retrieve // Package, imports and further code omitted

data from public transportation such as @Feature ("Transportation")

stations and their departure schedules. public class OpnvManager implements IOpnvManager {
public void queryStation(String stationID) {

Requirement: As a user, I want to click
on a station in order to view the departure
schedule.

Request request = new Request.Builder () .url(new HttpUrl.Builder ()
.scheme ("http") .host ("rnv.the-agent-factory.de")
.addQueryParameter ("stationID", stationID).build();

Work item: Implement service function new OkHttpClient () .newCall (request);
to retrieve the departure schedule of a
station. }

Figure 3.1: Example of TAFT’s documentation and code specifications [30]

The authors provide tool support for TAFT as plugins within the project manage-
ment software Jira, and the Eclipse IDE. The tools provide a feature navigator,
a feature dashboard, and a feature recommender that provides annotation recom-
mendations. The feature navigator allows developer’s to list the code files that
implement a feature and navigate towards a location in the code when clicked on in
the navigator, similar to the feature browser in HAnS (see section 2.4). The feature
dashboard is a part of the Jira tool, and it tracks various metrics for the project to
be displayed within this dashboard.

10 3 Related Work

FLOrIDA

The Feature Location Dashboard (FLOrIDA) is a standalone Java application de-
signed to encourage developers to use embedded feature annotations [1]. To achieve
this, its user interface offers several features, including a feature browser to explore
the documented feature locations, graphic visualizations that show relationships be-
tween features and the code fragments implementing them, and a variety of feature
metrics, such as the scattering degree or the number of files associated with a fea-
ture.

Another noteworthy capability of FLOrIDA is the support for retroactive feature
location recovery. For instances where a developer forgot to properly annotate a rel-
evant code asset with a feature, the tool can suggest potential feature locations with

the use of the information retrieval algorithm based on Lucene .

Feature Dashboard

Feature Dashboard is an open-source tool, usable as a plugin for the Eclipse IDE or as
a standalone program, that supports developers with the visualization of the features
in their software system [11]. Those visualizations are provided by extracting the
traceability information stored within embedded feature annotations and displayed
using an assortment of different views.

{93 Feature Dashboard View [Feature Dashboard View 52 = [Feature Dashboard View 52 = B8
& @ [@@ uice G@ices
Feature Address Line Number(s)
v O & MobilePhone v 0O & Config GPS src/Config/Reconfigurejava 12
0 & 6ps O .classpath HD src/Config/Reconfigurejava 7
4 & Resolution O & .project Resolution ~ src/Config/Reconfigurejava (5,17)
O % Basic O & .settings Resolution ~ src/Config/Testjava
O & HD O & bin Resolution src/Config/report.docx
0 & calls O featureModel.cfr
v O % Media v OE& src
O € camera v O & Config
O & mp3] Adapter.java
0 % EarPhone (m} Main.java
O & Memory Reconfigure.java
Feature Model -~ Resources | Feature Model Resources ~ Traces Feature Model Resources Traces

Figure 3.2: Overview of the Feature Dashboard View [11]

The tools primary interface is the Feature Dashboard View (see fig. 3.2), which rep-
resents a hierarchical overview of the feature model and all documented feature

'https://lucene.apache.org/

11

locations in the scope of the currently selected project. From this main view, devel-
opers can select specific features to explore them in more detail. For instance, the
Feature-to-File View and Feature-to-Folder View visualize the relationship between
these features graphically by drawing connections between nodes that represent the
selected features and their corresponding files or folders.

In addition, FeatureDashboard offers several analytical views. The Common Fea-
tures View uses a matrix to show which features are shared across multiple projects,
while the Feature Tangling View highlights all features that are tangled with a se-
lected feature. Finally, the Metrics View displays various feature metrics, similar to
the metrics provided by FLOrIDA.

4 Methodology

This chapter outlines the methodology used to address the extension of HAnS with
FeatRacer, as well as the evaluation of the resulting implementation.

4.1 Development

This section outlines the design decisions made for the integration of the FeatRacer
recommender system into the IntelliJ plugin HAnS, directly addressing the first re-
search question on providing IDE support for feature traceability. HAnS was selected
as the integration target for FeatRacer because it already offers robust support for
the kind of embedded feature annotation that FeatRacer utilizes, thus making it
an ideal extension point. The technical approach consists of two distinct phases to
ensure a robust integration. First, we refactor FeatRacer into a library to provide
recommendations. This library is then integrated into the HAnS, which serves to
present and annotate the recommendations given by FeatRacer.

Separating the recommendation engine from the presentation layer yields several
advantages. It increases the maintainability of the library and the plugin as both
can be tested and updated independently. Being a standalone library also allows
for FeatRacer to be integrated into other tools, for example into an extension for a
different IDE. Furthermore, it allows the IDE plugin to work with different libraries
that provide a recommender system.

4.1.1 FeatRacer

The initial project plan assumed that FeatRacer was in a mostly functional state,
requiring only minor adjustments and the development of a library interface to
enable its integration. However, an analysis of FeatRacer’s codebase revealed that
the existing implementation was a research prototype for experiment evaluation.
Consequently, the initial course of action shifted towards the refactoring of this
codebase.

The first action taken was addressing the project’s persistent data storage. FeatRacer
relied on an external MySQL database to store information on identified code as-
sets, feature mappings, metrics, and training datasets. To simplify the setup and
reduce overhead for plugin users, the database was migrated to SQLite. SQLite is

14 4 Methodology

a lightweight and serverless SQL database engine, thereby eliminating the need to
create an external database server. Instead of relying on a separate server process,
it utilizes a local file on the disk [5].

This migration required a substantial rework of the original database scheme, as
SQLite does not support the procedures utilized in the original MySQL design.
Since only an old snapshot of the database scheme was available, many procedures
had to be recovered by analyzing the functions calling the procedures and their
return values in FeatRacer’s code.

Further investigation of the project revealed issues with the dependency manage-
ment, as it contained duplicate and version-conflicting libraries. To address these
issues and streamline the dependency management process, the build tool Gra-
dle was introduced. This required a refactoring of the project’s directory struc-
ture to align with Gradle’s conventions and solving initial issues while adopting
it.

The next step was to understand FeatRacer’s internal workflow. While its con-
fig.properties file listed 23 execution modes, an analysis identified a sequence of
four that, when executed in order, formed the core pipeline for generating feature
recommendations(see Table 4.1).

D Generates data for assets and feature annota-
tions

aM Calculates metrics over features and assets
that implement them
Generate ARFF databsets from the metric

GDT
data

EDB Trains and runs classifiers based on the ARFF
datasets to produce recommendations

Table 4.1: Execution methods used generate recommendations

With an improved understanding of the workflow, the class FeatRacerAPI was cre-
ated to serve as the public interface for the library. This API defines two new
methods, for project initialization and invocation after the initialization respectively.
Both methods simplified the pipeline of four execution modes into a single method.
The process of making the API functional entailed two major engineering efforts:
Reworking the classifier method and implementing the methods for data and metrics
generation on a per-commit basis.

The original classifier module not implemented for production use. Its purpose was
to evaluate a wide range of classifiers from Mulan, an open-source Java library for
multi-label learning that integrates with the WEKA machine learning toolkit [31].
For the implementation, this module was re-engineered in its entirety. The RAKELd

4.1 Development 15

classifier was selected based on the original FeatRacer experiment, which identified
it as the overall best-performing model for this task [21]. In addition, the output
format was also refactored into a structured data format to facilitate its use within
the plugin.

Additionally, the original D and GM execution methods could only process entire
projects, which is considered to be too slow for displaying responsive feature recom-
mendations within the IDE. New variations of those methods were created for the
invocation method of our API that only processes one commit. These variations have
been changed to accept a commit hash as a parameter and their scope is limited to
that commit. This approach avoids the inefficiency of the previous methods, which
re-process the entire project history for every execution.

Beyond these major changes, numerous minor improvements and bug fixes were
applied throughout the codebase. While not individually detailed, these refine-
ments were essential contributors towards the performance and stability of this li-
brary.

4.1.2 HARnS Extension

. Write code Commit code commit hash
<dev> <dev>
-—

Y

0 No Prediction? Receive
- recommendations
©(_ Add to training data O and locations from
Yes FeatRacer

——

O >O< Notify

Add to feature model
Yes No

O Is in feature model?

L

Display
recommendation

:

Name missing Yes
features

<dev>

Select fitting features
<dev>

Missing
features?

U<

Figure 4.1: An overview of the conceptual workflow of the HAnS extension

The primary goal of this plugin extension is to integrate FeatRacer into the de-
veloper’s daily workflow. Figure 4.1 visualizes the conceptual blueprint that was
designed to guide the implementation of this workflow.

16 4 Methodology

It is imperative to note that FeatRacer requires initialization for a project before
this workflow becomes active. The developer can start the initialization process by
interacting with a notification sent by the plugin when working on a project that
has not been initialized yet.

The process is initiated when the developer writes their code and commits it to
version control. The extension needs to listen to this event and trigger FeatRacer
for that commit. When FeatRacer predicts that feature annotations are missing,
the plugin notifies the developer and presents the recommendations in an interactive
dialog. Within that dialog the developer can select the feature recommendations that
fit, and the plugin will automatically annotate the features based on the selections.
Finally, regardless of whether predictions were made, the commit is used to enrich
the training data, allowing the model to learn continuously from the developer’s
annotations.

4.2 Usability Study

This section details the experiment conducted to evaluate the HAnS FeatRacer
extension’s usability and to address the second research question. Participants per-
formed tasks using the plugin and their feedback was used to assess its usability.
In the following, the experimental setup, task design and the questionnaire are out-
lined.

4.2.1 Setup

We gave participants access to a Google Forms document that we prepared for this
experiment. The document contained an introduction, a pre-questionnaire, an expla-
nation on the task setup, the tasks and the questionnaire for evaluation.

The introduction started with a brief explanation for the background topics features
and feature traceability, to establish the core problem and the underlying challenges.
Next, embedded feature annotations were presented as a lightweight solution to this
problem. It explained that this approach can substantially reduce feature location
recovery costs (see section 2.3) and an explanation on how to use them was given.
HAnS and its core functionalities were introduced as a plugin, designed to support
developers in using these annotations.

This introduction highlighted the challenge of a developer forgetting to add anno-
tations. Subsequently, FeatRacer was introduced as a recommender system that
attempts to predict missing feature annotations, to nudge developers toward better
documentation. The workflow, as described in section 4.1.2, was also disclosed. We
concluded the introduction section by outlining the purpose and structure of the

4.2 Usability Study 17

experiment. Following the introduction, we asked participants to complete a pre-
questionnaire that was designed to gather information such as demographic details
and prior experience to the experimental topic.

We gave participants detailed setup instructions for the tasks. As a prerequisite,
they were required to have IntelliJ IDEA Ultimate Edition version 2025.1 or later,
Java JDK 21, and Git installed. A ZIP archive containing HAnS, FeatracerAPI,
and the task projects was provided, along with instructions for the setup of the IDE
environment, utilizing Gradle’s runl/de command to launch an instance of the IDE
running with the plugin.

4.2.2 Tasks

We gave all participants the same set of three tasks to familiarize themselves with the
main functionality and interface of the plugin. The first task served as a warmup task
while the second and third task evaluated for correctness, with participants addition-
ally reporting the time required to complete each task. The tasks were based on a
repository for the game Snake!, which was written in Java and contained feature an-
notations in its code. We chose the project for its simplicity, as it contains 16 features
and 8 files with fewer 500 lines of code in total, to minimize potential bias from par-
ticipants having difficulties understanding the project.

Task 0 (warmup): We asked participants to annotate some aspects of the code us-
ing the recommendation view from our plugin. For this we setup a set of mock feature
recommendations in a simulated recommendation view. Participants had to either
apply or reject some or all of the recommended features, and additionally, add anno-
tations for relevant features that had not been recommended.

Task 1 (Workflow): This task instructed participants to extend the Snake game
with the feature Poison, similar to the preexisting feature Food, which adds con-
sumable items to the play area. This required the participants to add code blocks
in various parts of the project. After completing the implementation, we asked
them to commit their changes, thereby triggering the plugin to display recommen-
dations for the changeset of that commit, and to review this dialog and apply
feature annotations where appropriate. After the task we asked participants to
provide feedback, which we use to evaluate the usability in the plugin’s main use
case.

Task 2 (Recommendations): The last task revisited the same method employed
for the warmup task, using different feature recommendations and a larger number
of mock recommendations. This task ensured that participants are exposed to fea-
ture recommendations, as task 1 did not guarantee that concrete locations would
appear for the modified code locations. Furthermore, in the event of issues with the

"https://github.com/johmara/Snake

18 4 Methodology

FeatRacerAPI, this task ensured that the core functionality of the plugin could still
be demonstrated and evaluated.

4.2.3 Analysis

The System Usability Scale (SUS) was utilized to assess the perceived usability of
the plugin [8]. It consists of ten statements rated on a five-point Likert scale ranging
from Strongly disagree to Strongly agree. The statements alternate between positive
and negative phrasing, which helps mitigate acquiescence bias. It provides a SUS
score, a value between 0 and 100, based on the responses given for those statements,
representing the overall usability of the system.

In addition to the SUS, participants were asked supplementary questions in between
and after the tasks. These questions aimed to further assess the usability of the plu-
gin and to provide participants with the opportunity to share qualitative feedback.
The full questionnaire can be found in the appendix.

5 Implementation

This chapter provides the implementation details for both the FeatRacerAPI and
the HAnS FeatRacer extension. First we detail the development of the FeatRac-
erAPI, covering the undertaken refactorings. Subsequently, we will describe the
implementation of the HAnS FeatRacer extension itself with a focus on the internal
components and the user experience.

5.1 FeatRacerAPI

This section details the refactoring effort undertaken to transform the FeatRacer
research prototype into a reusable library. The original codebase was designed
with the FeatRacer experiment in mind and was not suitable and ready for inte-
gration, thereby creating a demand for foundational refactorings before it could be
used with HAnS. While the main focus is the integration into HAnS, this library is
generic and can be utilized in other projects, such as plugins to support different
IDE’s.

5.1.1 Data Storage

FeatRacer used an external MySQL database to store the information needed to
create the training data for the classifier, which required manual setup and configu-
ration of the database. This presented a significant usability barrier for a seamless
IDE plugin experience. To eliminate the overhead of setting up an external database,
we reworked the current DataController class by migrating it to use a lightweight
and embedded SQLite database.

The connection is managed using the JDBC SQLite Driver, which connects to a
local .db file and creates it if none is found. Our implementation checks for the
existence of the required tables on every connection. If the tables are missing, the
database schema is initialized from a scheme.sql file within the resources directory.
However, the original scheme file provided with the MySQL implementation was an
incomplete snapshot from a previous version, which made it necessary to reverse-
engineer and reconstruct the missing parts of the snapshot during the conversion
process.

20 5 Implementation

The scheme defined tables and procedures, from which the latter act as functions
as part of the SQL scheme. These stored procedures are not supported by SQLite,
which necessitated a crucial refactoring of the DataController’s access logic. All
CallableStatements, which are used for the calling of procedures, were replaced
with PreparedStatements, that are used to execute database queries. This involved
extracting the SQL logic from the database scheme and embedding the queries
directly into the corresponding methods in the DataController’s code. A major
challenge was that the scheme was incomplete, because the definitions for several
procedures were missing in it. Their queries had to be reconstructed by analyzing the
name, input parameters and expected output of the methods in the DataController
that originally called them.

5.1.2 Dependency Management

During the testing of FeatRacer, the manual dependency management within the
lib directory was found to cause issues, as runtime errors emerged due to conflict-
ing versions of some libraries. To resolve those dependency issues and as part of
the project refactoring process, we integrated the Gradle build tool to establish a
reliable and well arranged dependency management and build process. This in-
volved the creation of a build.gradle file and migration of all required dependencies,
resolving the version conflicts by specifying a single version in the process. Us-
ing vulnerability data from the public source MVNRepository !, dependencies were
also updated to patched versions whenever possible to mitigate potential security
threats.

At first Gradle failed to correctly build the project, because the resources folder,
containing the scheme.sql that is essential for the database setup, was not included
in the build artifact. To resolve this and align with best practices, we refactored
the project’s directory structure to follow the Maven Standard Directory Layout,
which is natively supported by Gradle. This involved moving the project’s java
source code to src/main/java and all resource files to src/main/resources. The con-
fig.properties file containing FeatRacer’s options was also relocated to the resources
folder and the code was updated to load this configuration file as a classpath re-
source, to ensure the correct bundling into the build artifact and its availability at
runtime.

5.1.3 Interface

The FeatRacerAPI class serves as the public entry point and facade for the new
library. It exposes the methods initializeProject() and invokeFeatRacer() that share
a common set of parameters: The project path on which FeatRacer is invoked, an

'https://mvnrepository.com/

5.1 FeatRacerAPI 21

output path for generated files, and a string of file extensions, separated with com-
mas, that FeatRacer considers for the analysis. Both methods return a Map <String,
List<String» where each key is a file path with a line specification representing a
feature location, and the value is a list of recommended features for that loca-
tion.

The initialize Project() method performs the initial analysis of an entire project and
is intended to be run once as a setup, while the invokeFeatRacer() method performs
the analysis on a single commit, for which it takes an additional parameter containing
the commit hash. Both methods execute our feature recommendation pipeline in
sequence, as described in chapter 4.1.1.

The classifier module EDB was completely overhauled for production use, while the
data and metrics generation modules D, GM, and GDT received numerous fixes
and adjustments to enhance their stability and performance. For the invocation
method, D and GM have received an alternative version which only creates the
data and metrics for a single commit. This change is critical for performance, as it
allows the library to provide recommendations more quickly and efficiently after the
initialization.

Data Generation

The original D module leveraged the RepoDriller 2 library, a Java framework for min-
ing software repositories, to extract the information from the projects Git repository
that populate the internal database of FeatRacer. This was managed with the Pro-
jectReader WithDriller class, which implements RepoDriller’s Study interface to per-
form a comprehensive analysis of the entire project history. The visitor ProjectDB-
Visitor was used to insert this extracted data into the database.

To support the new per-commit analysis required for the invokeFeatRacer() method,
the new class CommitReader WithDriller was implemented. This class also imple-
ments the Study interface, but it is designed to mine data from a single commit
only. While the ProjectReader WithDriller class extracts all commit hashes for the
project, the new class receives only the commit hash that should be analyzed as a
parameter in its constructor. This hash is directly passed to the ProjectDB VisitorS-
ingle, a modified version of the ProjectDB Visitor that allows it to process data for
that commit only.

Metric Calculation

The MetricCalculatorDB class handles the calculation of metrics (see table 2.1) from
the data gathered in the previous step. Originally, this class was designed to process

2https://github.com/mauricioaniche/repodriller

22 5 Implementation

the entire dataset at once. The class was extended with the calculateMetricsSingle()
method, which takes a commit hash as input, retrieves the collected data associ-
ated with that commit, and then calculates and inserts the corresponding metric
data into the database. This targeted approach, combined with the data mining
improvements, significantly reduces execution time for analyzes that run after the
initial project setup.

Recommendation Service

As previously mentioned, the module providing recommendations was only a ves-
sel for the FeatRacer experiment evaluation and therefore in need of an overhaul.
To combat this, the new class RecommendationService was created for use within
our API class. Its main method runClassifier() extracts the latest commit dataset
in the internal database, checks if it has a test .arff dataset associated with the
commit, and if it does, it will train a machine learning model with the training
.arff dataset and use the RAKELd classifier from the Mulan library to make predic-
tions [31].

For each instance of that test dataset, a prediction is made and a MultiLabelOutput
is returned, that if not empty, is added to the result. The resulting HashMap is re-
turned after predictions for each instance have been made.

5.2 HAnS-FeatRacer Extension

This section describes the process of extending the IntelliJ plugin HAnS with FeatRacer.
While this extension was specifically developed for FeatRacer, it was designed with
extendability and modularity in mind to facilitate future integrations with other
classifiers or traceability tools.

The following subsections outline the components of the plugin. First we describe
the modular integration to manage classifiers. The recommendation view is then
introduced as the main interface for reviewing and applying recommendations. Fi-
nally, we present the implementation logic behind project initializations and the
commit watcher, responsible for detecting commits and triggering our classifier ac-
cordingly.

5.2.1 Classifier Integration

The plugin extension was designed to increase the usability of FeatRacer by providing
IDE support to increase FeatRacer’s ability to nudge developers for an increased
feature traceability. We do not want this extension to be limited to FeatRacer,
as a modular approach increases the reusability, maintainability and scalability of

5.2 HAnS-FeatRacer Extension 23

our project. For this reason we implemented a strategy design pattern to integrate
our classifier. A visual representation of this implementation can be seen in Figure
5.1.

FeatRacerStrategy RecommendationData
- element: PsiElement
+ initializeProject(String, int, String, String): |- features: List<String>
List<RecommendationData> - isCodeBlock: boolean
+ invoke(String): List<RecommendationData> - elementEnd: PsiElement
- getRecommendationData(Map<String,

List<String>>): List<RecommendationData>

v

ClassifierManager
<<Interface>>
ClassifierStrategy - strategy: ClassifierStrategy
+ initializeProject(String, int, String, String): ‘ + getinstance(project): ClassifierManager
List<RecommendationData> + getStrategy(): ClassifierStrategy
+ invoke(String): List<RecommendationData> + setStrategy(ClassifierStrategy): void

Figure 5.1: UML diagram of the strategy pattern for the classifier integration

We define the interface ClassifierStrategy that provides two methods: initialize Pro-
ject() for a full project analysis at the initialization stage and invoke() for subse-
quent commits after the initialization. Both methods return a list of Recommenda-
tionData objects, which encapsulates all information for a single recommendation,
such as the location data of the recommendation and the features that were recom-
mended. To manage the current ClassifierStrategy, the ClassifierManager project
level service is utilized. Whenever the classifier should be triggered, the current

strategy is retrieved from the ClassifierManager and the corresponding method is
called.

For our FeatRacer implementation we created the class FeatRacerStrategy, imple-
menting the ClassifierStrategy interface, which acts as an adapter by calling the
FeatRacerAPI methods and then using the private helper method getRecommen-
dationData() to convert the output into a List<RecommmendationData>, which is
returned. The methods are called as part of a Backgroundable task to ensure that
the FeatRacerAPI call does not impair the performance of the main IDE thread, as
that would cause the IDE to freeze.

5.2.2 Recommendation View

Whenever the call of the FeatRacerAPI returns one or more recommendations, a
dialog window is presented to the developer to support the developer in reviewing
and applying the suggested feature annotations. The dialog utilizes a CardLayout
with each panel corresponding to one feature recommendation. As shown in figures
5.2 and 5.3, each panel consists of a read-only editor to provide context, and an

24 5 Implementation

tions: PsijavaFile:SquareToLightUp java

Figure 5.2: Example of a line annotation in the recommendation dialog

adjacent panel on the east with a checkbox for every recommended feature and an
additional text field for custom input.

The panel is implemented with the class RecommendationDialogPanel, which ex-
tends JPanel. Each instance stores the information for a given recommendation,
for example, the location of the recommendation or the suggested features. It also
handles the logic for our automatic annotation process.

If the developer ticks a checkbox or types into the text field, an action listener is
triggered to update the annotations based on the selected features. To remember the
exact boundaries of our annotations, we leverage the RangeMarker from IntelliJ’s
Platform API. A RangeMarker represents a range of text in the document that
tracks its position as the document is modified. When our listener is triggered
and no annotation exists, we will apply the annotation and create corresponding
RangeMarker for each comment. Subsequent calls then update the text within this
marker. The annotation process is designed to handle both single-line and multi-
line code selections, depending on if the recommendation contained a single-line or
a range of lines for the location.

5.2.3 Initialization

The entry point for the initialization of a project is the InitializationActivity class
that implements IntelliJ’s ProjectActivity interface and is registered in the plu-
gin.xml as a postStartupActivity. When the project has finished loading, this ac-
tivity checks if the current project has already been initialized. If it has not, a

5.2 HAnS-FeatRacer Extension 25

mendations: PsilavaFile:KeyboardListenerjava

Figure 5.3: Example of a block annotation in the recommendation dialog

sticky balloon notification is displayed at the bottom right of the IDE, prompting
the developer to initialize the current project.

The notification triggers an action event when clicked, opening an initialization
dialog that gathers information from the developer, such as the id of the commit at
which the initialization analysis should begin. The dialog was also designed to ask
the developer for a custom analysis folder path, in which FeatRacer stores all its
information, but this feature is currently deprecated due restrictions with IntelliJ’s
sandboxing.

Upon clicking the initialize button, the given information is saved using a project
level service implementing the PersistentStateComponent interface. Finally, the
initialize Project() function from the current classifier strategy is called to perform
the initial analysis of the full project. In the case that this analysis returns any
recommendations, they are immediately presented to the developer with the recom-
mendation dialog.

5.2.4 Commit Watcher

In order to nudge the developer and provide recommendations, our extension must be
able to listen when a successful commit is made. This functionality was implemented
using the CheckinHandlerFactory and CheckinHandler extension points provided by
the IntelliJ Platform API.

To ensure modularity and extendability, the implementation of our handler does
not directly invoke FeatRacer. Instead, we use a publish-subscribe pattern to sep-
arate the logic of detecting a commit from the logic of processing it. This means

26 5 Implementation

that other components can subscribe their own implementation of the CommitLis-
tener interface to the Commit Watcher service, without requiring any changes to our
implementation of the CheckinHandler.

Utilizing this structure we implemented the FeatRacerCommitListener that im-
plements our CommitListener and is registered to our CommitWatcher service.
Our implementation invokes the FeatRacerAPI on every successful commit. If
the FeatRacerAPI returns any number of recommendations, those recommenda-
tions are displayed to the developer with our recommendation view (see chap-
ter 5.2.2). If no recommendations are returned, the call still serves purpose by
extending FeatRacer’s internal dataset with the new information from the com-
mit.

6 Usability Study Results

This chapter details the findings from our usability study, which was conducted to
evaluate the usability and design of the HAnS plugin extended with FeatRacer, by
presenting the data collected during the experiment. From this data we will then
calculate and interpret the SUS score to assess the overall perceived usability of the
plugin.

Demographics

The participants comprised 14 university students from three different universities at
the undergraduate and bachelor level, with more than two-thirds having completed
their bachelor’s degree (see fig. 6.1). All participants were enrolled in study programs
related to computer science.

What is your highest completed education level related to computer science?

14 responses

@ Undergraduate

@ Bachelor
Master

@® PhD

Figure 6.1: Education levels between participants

Regarding programming experience, 12 out of the 14 participants reported having
more than three years of experience, with six of them reporting over five years of
experience (see fig. 6.2). In addition, the participants were asked to rate their fa-
miliarity with HAnS and embedded feature annotations on a Likert scale ranging
from one to five, labeled as very unfamiliar to very familiar. All participants indi-
cated being "very unfamiliar" with the HAnS plugin, and 86% reported the same for
embedded feature annotations.

For the evaluation, participants were asked to respond to both Likert-scale items
and open-ended questions. Subsequently, the results will be shown. In the follow-
ing figures, the responses range from 1 (Strongly disagree) to 5 (Strongly agree),

28 6 Usability Study Results

How much programming experience do you have?

14 responses

@ less than 1 year
@ 1-2 years

3-5 years
@ more than 5 years

) 4

Figure 6.2: Programming experience between participants

to represent the Likert statements Strongly disagree, Disagree, Neutral, Agree, and
Strongly agree, respectively.

Recommendations after committing

During task 1, FeatRacer posed a considerable challenge for the participants in
completing the task. 78% of participants disagreed with the statement that the
locations displayed in the recommendation view were relevant to the changes they
made during the task (see fig. 6.3). The comments provided in response to the
question about encountered problems offered further insight, as several participants
reported that the plugin highlighted incorrect code locations following the commit.
One participant noted: "Probably only in one instance were the highlights correct.
While sometimes additional code to the actually changed code was included, even
cases happened where the highlighted code was not in the relevant region at all’.
This suggests that FeatRacer might experience internal issues in identifying the
exact location of code changes within a commit.

The interface of the recommendation view itself received positive feedback, with 11
out of 14 participants providing favorable comments about the view. The user inter-
face was recognized for its simplicity, clarity, and intuitive design. One participant
remarked: "A really simple design one can understand intuitively’. The process-
ing time for a commit was also evaluated positively, with 11 participants agreeing
that the time required for the recommendation view to appear after a commit was
appropriate.

Post-Task Questionnaire

After the participants completed the tasks, we asked them if they thought the plugin
to be too intrusive. Except for one participant, all other participants indicated that
they did not find the plugin intrusive, with eight participants strongly disagreeing

29

5 5]
4 o 4
3 3]
24 2
14 14

T T
The locations shown in the dialog were relevant to the The time it took to display the recommendations after
changes | made. the commit felt appropriate.

Figure 6.3: Results of the questionnaire after task 2

with the statement (see fig. 6.4). Furthermore, 12 out of the 14 participants agree
with the statement "This plugin would help me remember to annotate feature I might
forget", suggesting that the plugin supports users in maintaining feature traceability
without disrupting their workflow too much.

T
T This plugin would help me remember to annotate
| found the plugin too intrusive. features | might forget.

Figure 6.4: Results of the post-task questionnaire

As part of the post-task questionnaire, we asked the participants about their opinion
on being reminded after a commit when parts of the code have not been annotated,

30 6 Usability Study Results

to which 13 of the 14 participants expressed a positive opinion. One participant
responded with "It can help to remember to annotate. I think it is not too bothersome
to be reminded every time, since it is shown in only a notification’, which also
reinforces the observation from the previous section that participants do not find
the plugin too intrusive.

When it comes to the aspects participants found the most challenging when using
our plugin, we received a variety of different answers. Two participants mentioned
difficulties with the error recovery process, noting that the recommendation view
cannot be reopened once it has been closed. Fixes for this specific problem were
also suggested, with one participant proposing to "Allow the user to reopen it/open
it at any time instead of only after committing". Some participants also expressed
frustration regarding the lack of flexibility in the recommendation view, because
the highlighted locations were not adjustable. This made it difficult to annotate
the code locations returned by FeatRacer during task 1, as the highlighted loca-
tions often encompassed more code than what was actually modified in the com-
mit.

Task completion time

Task completion times

[

12

10

Time in minutes

Task 1 Task 2

Figure 6.5: Task completion times

Figure 6.5 displays the completion times for the tasks. The mean completion time
for task 1 was 10 minutes and 20 seconds, while task 2 had a mean completion time of
2 minutes and 2 seconds. For task 1 the recorded time included both the coding and
the subsequent review of the recommendation view, whereas task 2 measured only

31

the time required to evaluate all recommendations within the test recommendation
view.

Task correctness

No participant was able to correctly solve task 1 due to the aforementioned issues.
Of the 14 participants, nine made no annotation at all, while four annotated the
Poison feature at incorrect locations, and one participant incorrectly labeled a sec-
tion with an unrelated feature. In task 2, participants correctly annotated 51 assets
out of 70 recommendations (72%), making a total of 19 mistakes. 10 out of 14
participants made at least one mistake, with a median of one mistake per partici-
pant.

System Usability Scale

As part of the post-task questionnaire, the participants were asked ten questions
based on the System Usability Scale (SUS) [8]. The results of the SUS questionnaire
are presented in this section to evaluate the plugin’s usability and, subsequently, to
calculate and interpret the overall SUS score.

Figure 6.6 displays the results for the first three questions of the SUS questionnaire.
The results indicate that the majority of participants expressed an interest to use
the plugin more frequently. It is notable that all participants disagreed with the
statement "I found the plugin unnecessarily complez”, and 86% of those disagreed
strongly. The statement "I thought the plugin was easy to use" also received highly
affirmatory feedback, with 86% of participants agreeing or strongly agreeing with
it.

While most participants disagreed with the sentiment "I think that I would need the
support of a technical person to be able to use this plugin’, a subset of three partic-
ipants agreed that they might need help. The responses to the statement "I found
the various functions in this plugin were well integrated” and "I thought there was too
much inconsistency in this plugin" were mixed, as seen in figure 6.7.

The results yielded for the last four questions of the SUS questionnaire can be seen
in figure 6.8. The statements "I would imagine that most people would learn to
use this plugin very quickly" received positive resonance, as all participants either
agreed (4 out of 14) or strongly agreed (10 out of 14). The findings for the state-
ment "I needed to learn a lot of things before I could get going with this plugin'
support this, with 12 out of 14 participants disagreeing that they needed to learn
a lot. Additionally, a vast majority of participants did not think that the plugin
was too cumbersome to use, with three participants being neutral towards that
statement.

32 6 Usability Study Results

54
5 5

41 4 4

37 3 3

2 2 o 2

14 14 14

| think that | would like to use this plugin frequently. | found the plugin unnecessarily complex. I thought the plugin was easy to use.

Figure 6.6: Results for SUS questions 1-3

51 54 51

4 2] 4

3 3 3

>) 1 2

14 14 1

T T T
I think that | would need the support of a technical | found the various functions in this plugin were well | thought there was too much inconsistency in this
person to be able to use this plugin. integrated. plugin.

Figure 6.7: Results for SUS questions 4-6

Using the results from the SUS questionnaire, the overall SUS score was calculated.
Figure 6.9 illustrates the distribution of SUS scores among participants. The mean
score is 75, with the median being 76.25. The lowest recorded score was 52.5, while
the highest reached 87.5.

Additionally, figure 6.10 displays different interpretations for the mean SUS score,
as defined by Bangor et al. [3]. Based on this interpretation, a mean score of 75
places our plugin slightly above the good category on the adjective rating scale, and
corresponds to a C on a school grade scale.

33

5 H
u ¢ ¢
3 3
2 2

st people we use this needed to leam a lot of thin
in very quickly. I found the plugin very cumbersome to use. I felt very confident using the plugin. ~ with this plugin.

Figure 6.8: Results for SUS questions 7-10

SUS Score
°
50 55 60 65 70 75 80 85 20

Figure 6.9: Distribution of SUS scores

NOT ACCEPTABLE MARGINAL ACCEPTABLE
ooy ow [weH (T
A F [D I €1 B A
ADJ ECTIVE WORST BEST

I IR N IS BN L P B E P I I
0O 10 20 30 40 50 e0 70 80 90 100

SUS Score

Figure 6.10: Acceptability ranges, school grading scales, and adjective ratings for
the average SUS score according to Bangor et al. [3]

7 Discussion

This chapter discusses the findings from the usability study and discusses their
implications in the context of the plugin’s overall usability. Subsequently, we will
discuss the limitations of our usability study to provide context for the implications
of the results.

7.1 Implications

We invited 14 computer science students from three different universities with vary-
ing levels of experience and expertise for a usability study. The results for task
1 indicate that FeatRacer encounters internal issues when identifying the correct
location of changesets, as most participants experienced issues with the task due
to incorrectly highlighted code locations. The logs confirm that the plugin logic
correctly highlights the locations it receives from FeatRacer, but FeatRacer out-
puts incorrect locations. This implies that FeatRacer’s data generation module (see
section 5.1.3) might store incorrect code locations into its internal database, which
are subsequently included in the generated .arff test file and returned by the API.
Further investigation also revealed issues in the logic responsible for recognizing
annotated assets, potentially causing FeatRacer to return locations that were previ-
ously annotated.

The RepoDriller library, which FeatRacer currently leverages in its Data Generation
module (see section 5.1.3) to extract the changeset data and store it in FeatRacer’s
internal database, relies on outdated versions of dependencies, with a total of 50
known vulnerabilities reported by MVNRepository, for example, a remote code ex-
ecution exploit in the dependency Log4j2'. This severely limits the ability for the
plugin to be adopted in a professional software development environment, as its
core functionality does not work as intended and it also poses a substantial secu-
rity risk. Further iterations should prioritize resolving these issues and consider a
rewrite of the Data Generation module to ensure security and location accuracy for
this tool.

Task 2 allowed us to demonstrate the functionality our plugin independently of
FeatRacer’s recommendation engine. The overall interface design of the recommen-
dation view was received positively by most participants, who reported no difficulties

"https://www.cve.org/CVERecord?id=CVE-2021-44832

36 7 Discussion

in understanding its usage. This suggests that even users with limited software de-
velopment experience or little familiarity with embedded feature annotations were
able to use the recommendation view intuitively.

Participants highlighted issues with the plugin’s limited error-recovery capabilities.
Currently, when a user closes the recommendation view, the recommendation data
is lost. As a result, if a user accidentally closes the dialog or wants to make retro-
spective changes, all recommendations are lost and the code segments need to be
manually recovered again. This impacts usability because a user mistake can negate
the benefits of this plugin.

One potential improvement could be the creation of a dedicated sidebar panel, which
stores and displays the data of past commits, allowing users to reopen the recom-
mendation view for a given commit by clicking on its entry. This would need adjust-
ments with the current logic of the recommendation view, as modifications in the
code would shift the offset and therefore invalidate location highlighted by the view.
A simpler and more immediate enhancement could be enabling users to reopen the
latest recommendation view. Furthermore, usability could be improved by allow-
ing the user to modify the highlighted locations within the view. This would make
the recovery process easier in the case of an unexpected issue due to the plugin or
recommender system.

For a practical adaptation into a developer’s workflow, future revisions should focus
on resolving the current security vulnerabilities and the incorrectly highlighted code
locations. Additionally, an implementation of the mentioned suggestions would help
in increasing the robustness and usability of the plugin, and conducting a second
study after resolving those issues could provide further insights into how effectively
this plugin nudges developers towards a well-maintained documentation of their
feature locations. Despite the problems with the plugin, with our mean SUS score
of 75 the usability can be considered acceptable (see fig. 6.10), and a majority
of participants found the idea to remind developers on a commit helpful and not
intrusive to their workflow.

7.2 Threats to Validity

Internal Validity. Differences in participants programming experience could have
influenced task completion times, as they may have completed the tasks faster.
Furthermore, those times were self-reported and could thereby have measurement
inaccuracies. To mitigate bias, the participants were given explicit instructions on
when to start and stop the timer, and we additionally supervised participants to
ensure the correct measurement and reporting of the completion times. Addition-
ally, the programming task may have been too simple to reflect real-world usage,
which could have affected completion times and may have introduced a bias to the
study’s findings. Still, we observed that the completion times for participants had a

7.2 Threats to Validity 37

high standard deviation, ranging from low completion times (5:49 minutes) to high
completion times (14:10 minutes), suggesting that the level of difficulty was ap-
propriate when taking into account the varying levels in participants programming
experience.

External Validity. It is important to highlight that the university context and
the small sample size constrain the generalizability of the findings, as this group is
not representative of the broader population of software developers and their diverse
perspectives. Future studies should consider a larger and more diverse sample size to
obtain more representative insights into the usability of the extension. Nevertheless,
the study found initial insights into the usability of the plugin and identified several
areas for potential improvement in further iterations.

Another limitation of the study’s design is that it does not provide an accurate
evaluation of how effective the plugin can nudge developers to maintain proper
annotations over the course of project, as the study’s duration was too short to
simulate a realistic development workflow. In task 2, participants were instructed
not to annotate the code manually, as such this is not an accurate representation
of a developer naturally forgetting annotations and relying on the plugin to get
reminded. A long-term usability study observing developers using the plugin over
several weeks or months would provide more meaningful insight into the plugin’s
usability in a real-world scenario.

8 Conclusion

Embedded feature annotations are a lightweight method in retaining feature trace-
ability within a project, which have been found to substantially reduce the cost to
recover feature locations when adopted [13]. However, this benefit is lost when de-
velopers forget to consistently apply annotations, and as a consequence the feature
locations must be recovered through more laborious and time-consuming recovery
techniques. FeatRacer addresses this challenge by reminding developers when it
predicts missing feature annotations for code locations in a commit, thus helping
developers to proactively record feature locations.

This thesis aimed to extend the IntelliJ plugin HAnS with FeatRacer to enhance
the usability and effectiveness of FeatRacer by integrating it into the workflow of
developers, and subsequently, to evaluate the perceived usability of such an inte-
gration through a usability study. For the purpose of this integration, FeatRacer
received optimizations and was refactored into a library to enable its incorporation
into the plugin. The functionality of HAnS was extended with a recommenda-
tion view, allowing developers to review and automatically apply feature annota-
tions suggested by FeatRacer directly within the IDE. The integration was designed
to be generic, modular and extendable, ensuring that the plugin is not limited to
FeatRacer.

We evaluated the plugin in a usability study, which provided valuable insights and
feedback. While certain limitations were identified, particularly regarding the rec-
ommender system and the plugin’s error-recovery, participants feedback found the
plugin to be helpful and intuitive in applying feature recommendations. This is re-
flected by the SUS score, which indicates that the plugin has an acceptable level of
usability.

Future work should address FeatRacer’s current limitations, particularly the issues
regarding security and the accuracy of recommendation locations. Additionally,
extending the plugin with more robust error-recovery capabilities would be valuable
in improving its usability. Conducting a follow-up long-term study could also yield
useful insights into the long-term usability of recommender systems to assist with
proactive feature location recording. We hope that this thesis can provide a solid
foundation to inspire future work.

Bibliography

1]

Berima Andam, Andreas Burger, Thorsten Berger, and Michel RV Chaudron.
Florida: Feature location dashboard for extracting and visualizing feature
traces. In Proceedings of the 11th International Workshop on Variability Mod-
elling of Software-Intensive Systems, pages 100-107, 2017.

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. Feature-oriented
software product lines. 2013.

Aaron Bangor, Philip Kortum, and James Miller. Determining what individual
sus scores mean: Adding an adjective rating scale. Journal of usability studies,
4(3):114-123, 20009.

Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Griinbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. What is a feature? a
qualitative study of features in industrial software product lines. In Proceedings
of the 19th International Conference on Software Product Line, SPLC ’15, page
16-25, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450336130. doi: 10.1145/2791060.2791108. URL https://doi.org/10.
1145/2791060.2791108.

Satish Tanaji Bhosale, Tejaswini Patil, and Pooja Patil. Sqlite: Light database
system. Int. J. Comput. Sci. Mob. Comput, 44(4):882-885, 2015.

A. Blackwell and M. Burnett. Applying attention investment to end-user pro-
gramming. In Proceedings IEEE 2002 Symposia on Human Centric Comput-
ing Languages and Environments, pages 28-30, 2002. doi: 10.1109/HCC.2002.
1046337.

Alan F Blackwell and Thomas RG Green. Investment of attention as an analytic
approach to cognitive dimensions. In PPIG, page 5. Citeseer, 1999.

John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4-7, 1996.

Chris Brown and Chris Parnin. Nudging students toward better software engi-
neering behaviors. In 2021 IEEE/ACM Third International Workshop on Bots
in Software Engineering (BotSE), pages 11-15, 2021. doi: 10.1109/BotSE52550.
2021.00010.

42

[10]

[11]

[12]

[13]

[14]

[16]

[17]

Bibliography

Christopher S Corley, Kostadin Damevski, and Nicholas A Kraft. Exploring the
use of deep learning for feature location. In 2015 IEEFE International Conference
on Software Maintenance and Evolution (ICSME), pages 556-560. IEEE, 2015.

Sina Entekhabi, Anton Solback, Jan-Philipp Steghofer, and Thorsten Berger.
Visualization of feature locations with the tool featuredashboard. In Proceedings

of the 23rd international systems and software product line conference-volume
b, pages 1-4, 2019.

T.R.G. Green and M. Petre. Usability analysis of visual programming envi-
ronments: A ‘cognitive dimensions’ framework. Journal of Visual Languages &
Computing, 7(2):131-174, 1996. ISSN 1045-926X. doi: https://doi.org/10.1006/
jv1c.1996.0009. URL https://www.sciencedirect.com/science/article/
pii/S1045926X96900099.

Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki.
Maintaining feature traceability with embedded annotations. In Proceedings
of the 19th International Conference on Software Product Line, SPLC ’15,
page 61-70, New York, NY, USA, 2015. Association for Computing Machin-
ery. ISBN 9781450336130. doi: 10.1145/2791060.2791107. URL https:
//doi.org/10.1145/2791060.2791107.

Rainer Koschke and Jochen Quante. On dynamic feature location. In Proceed-
ings of the 20th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’05, page 86-95, New York, NY, USA, 2005. Association for
Computing Machinery. ISBN 1581139934. doi: 10.1145/1101908.1101923. URL
https://doi.org/10.1145/1101908.1101923.

Jacob Kriiger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. Towards a better understanding of software features and
their characteristics: A case study of marlin. In Proceedings of the 12th In-
ternational Workshop on Variability Modelling of Software-Intensive Systems,
VAMOS ’18, page 105-112, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450353984. doi: 10.1145/3168365.3168371. URL
https://doi.org/10.1145/3168365.3168371.

Jacob Kriiger, Thorsten Berger, and Thomas Leich. Features and how to find
them: a survey of manual feature location. In Software Engineering for Vari-
ability Intensive Systems, pages 153—172. Auerbach Publications, 2019.

Jorg Liebig, Sven Apel, Christian Lengauer, Christian Késtner, and Michael
Schulze. An analysis of the variability in forty preprocessor-based software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1, pages 105-114, 2010.

Salome Maro, Anthony Anjorin, Rebekka Wohlrab, and Jan-Philipp Steghofer.
Traceability maintenance: factors and guidelines. In Proceedings of the 31st

[21]

22]

Bibliography 43

IEEE/ACM International Conference on Automated Software Engineering,
pages 414-425, 2016.

Salome Maro, Jan-Philipp Steghofer, and Miroslaw Staron. Software traceabil-
ity in the automotive domain: Challenges and solutions. Journal of Systems
and Software, 141:85-110, 2018. ISSN 0164-1212. doi: https://doi.org/10.1016/
j-jss.2018.03.060. URL https://www.sciencedirect.com/science/article/
pii/S0164121218300608.

Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger,
Alexandre Bergel, and Truong Ho-Quang. Hans: Ide-based editing support for
embedded feature annotations. In Proceedings of the 25th ACM International
Systems and Software Product Line Conference - Volume B, SPLC ’21, page
28-31, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450384704. doi: 10.1145/3461002.3473072. URL https://doi.org/10.
1145/3461002.3473072.

Mukelabai Mukelabai, Kevin Hermann, Thorsten Berger, and Jan-Philipp
Steghofer. Featracer: Locating features through assisted traceability. [IFEFE
Transactions on Software Engineering, 49(12):5060-5083, 2023. doi: 10.1109/
TSE.2023.3324719.

Chris Parnin and Spencer Rugaber. Resumption strategies for interrupted
programming tasks. Software Quality Journal, 19(1):5-34, Mar 2011. ISSN
1573-1367. doi: 10.1007/s11219-010-9104-9. URL https://doi.org/10.1007/
s11219-010-9104-9.

Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger,
Sven Apel, Krzysztof Czarnecki, and Jesus Alejandro Padilla. A study of feature
scattering in the linux kernel. IEEE Transactions on Software Engineering, 47
(1):146-164, 2021. doi: 10.1109/TSE.2018.2884911.

Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval. IEEE Transactions on
Software Engineering, 33(6):420-432, 2007. doi: 10.1109/TSE.2007.1016.

Francisca Pérez, Jorge Echeverria, Raul Lapena, and Carlos Cetina. Comparing
manual and automated feature location in conceptual models: A controlled
experiment. Information and Software Technology, 125:106337, 2020. ISSN
0950-5849. doi: https://doi.org/10.1016/j.infsof.2020.106337. URL https://
www.sciencedirect.com/science/article/pii/S095058492030104X.

Abdul Razzaq, Andrew Le Gear, Chris Exton, and Jim Buckley. An empirical
assessment of baseline feature location techniques. FEmpirical Software Engi-
neering, 25(1):266-321, 2020.

[27]

[28]

Martin P. Robillard and Gail C. Murphy. Representing concerns in source
code. ACM Trans. Softw. Eng. Methodol., 16(1):3-es, February 2007. ISSN
1049-331X. doi: 10.1145/1189748.1189751. URL https://doi.org/10.1145/
1189748.1189751.

Julia Rubin and Marsha Chechik. A Survey of Feature Location Techniques,
pages 29-58. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-
642-36654-3. doi: 10.1007/978-3-642-36654-3 2. URL https://doi.org/10.
1007/978-3-642-36654-3_2.

Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. A common notation
and tool support for embedded feature annotations. In Proceedings of the 24th
ACM International Systems and Software Product Line Conference - Volume
B, SPLC ’20, page 5-8, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450375702. doi: 10.1145/3382026.3431253. URL https:
//doi.org/10.1145/3382026.3431253.

Marcus Seiler and Barbara Paech. Documenting and exploiting software feature
knowledge through tags. In SEKFE, pages 754777, 2019.

Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and Ioannis
Vlahavas. Mulan: A java library for multi-label learning. The Journal of
Machine Learning Research, 12:2411-2414, 2011.

Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. How devel-
opers perform feature location tasks: a human-centric and process-oriented
exploratory study. Journal of software : evolution and process., 25(11), 2013.
ISSN 2047-7473.

List

2.1
2.2

2.3

3.1
3.2

4.1

5.1
0.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Al
A2
A3
A4
A5
A6
A7

of Figures

Example of feature scattering across multiple files in a codebase [21]
Example of embedded feature annotations for folder(1), file(2), and
fragment(3) mapping L
Overview of the HAnS plugin [20]

Example of TAFT’s documentation and code specifications [30] . . .
Overview of the Feature Dashboard View [11]

An overview of the conceptual workflow of the HAnS extension . . .

UML diagram of the strategy pattern for the classifier integration . .
Example of a line annotation in the recommendation dialog
Example of a block annotation in the recommendation dialog

Education levels between participants
Programming experience between participants
Results of the questionnaire after task 2
Results of the post-task questionnaire
Task completion times
Results for SUS questions 1-3
Results for SUS questions 4-6
Results for SUS questions 7-10
Distribution of SUSscores
Acceptability ranges, school grading scales, and adjective ratings for
the average SUS score according to Bangor et al. [3]

Questionnaire: Demographics
Questionnaire: Evaluation after the second task
Questionnaire: SUS
Questionnaire: SUS 2
Questionnaire: SUS 3
Questionnaire: Post Task
Questionnaire: Post Task 2

10

15

23
24
25

List

2.1

4.1

of Tables

Metrics used by FeatRacer where a be an asset modified in commit
¢, with C being the set of all commits up to ¢ where a has been
modified [21]

Execution methods used generate recommendations

A Questionnaire

Pre-Questionnaire

What is your highest completed education level related to computer science? *

O Undergraduate

(O Bachelor

O Master
O phD

How much programming experience do you have? *

O less than 1 year

O 1-2 years
O 3-5years

(O more than 5 years

What is your familiarity with the IntelliJ Plugin HAnS? *
very unfamiliar O O O O O very familiar

What is your familiarity with embedded feature annotations? *

1 2 3 4 5

very unfamiliar O O O O O very familiar

Figure A.1: Questionnaire: Demographics

Task 2: Evaluation

How much time did task 2 take? *

Hr Min Sec

The locations shown in the dialog were relevant to the changes | made *

1 2 3 4 5

Strongly disagree O O O O O Strongly agree
The time it took to display the recommendations after the commit felt appropriate *

Strongly disagree O O O O O Strongly agree

How did you like the recommendation view? *

Your answer

Did you have any problems while solving the task?

Your answer

Figure A.2: Questionnaire: Evaluation after the second task

Evaluation

I think i would like to use this plugin frequently *

Strongly disagree O O O O O Strongly agree
| found the plugin unnecessarily complex *

Strongly disagree O O O O O Strongly agree
| thought the plugin was easy to use *

Strongly disagree O O O O O Strongly agree

I think that | would need the support of a technical person to be able to use this *
plugin

Strongly disagree O O O O O Strongly agree

Figure A.3: Questionnaire: SUS

| found the various functions in this plugin well integrated *

1 2 3 4 5

Strongly disagree O O O O O Strongly agree

| thought there was too much inconsistency in this plugin *

1 2 3 4 5

Strongly disagree O O O O O Strongly agree

| would imagine that most people would learn to use this plugin very quickly *

1 2 3 - 5

Strongly disagree O O O O O Strongly agree

| found the plugin very cumbersome to use *

Strongly disagree O O O O O Strongly agree

Figure A.4: Questionnaire: SUS 2

| felt very confident using the plugin *

1 2 3 4 5

Strongly disagree O O O O O Strongly agree

| needed to learn a lot of things before | could get going with this plugin *

1 2 3 4 5

Strongly disagree O O O O O Strongly agree

Figure A.5: Questionnaire: SUS 3

Evaluation Part 2

| found the plugin too intrusive *
Strongly disagree O O O O O Strongly agree
This plugin would help me remember to annotate features i might forget *

Strongly disagree O O O O O Strongly agree

What is your opinion on being reminded after a commit when parts of your code *
have not been annotated?

Your answer

What were the most challenging aspects when using this tool?

Your answer

Figure A.6: Questionnaire: Post Task

Did you encounter any issues with the plugin during the tasks?

Your answer

Do you have suggestions for improving the plugin?

Your answer

Feel free to share any additional feedback here

Your answer

Figure A.7: Questionnaire: Post Task 2

