RUHR-UNIVERSITAT BOCHUM

Automating Test-Case Adaptation and Integration
in Fork Ecosystems Using Large Language Models

Keanu-Wesley Schurkus

Bachelor Thesis — September 1, 2025
Chair of Software Engineering.

Supervisor: Prof. Dr. Thorsten Berger
2. Supervisor: Prof. Dr. Yannic Noller ®
Advisor: Dr. Mukelabai Mukelabai RUB ® FaCUl-ty Of

. o Computer
® @ | Science
@

Abstract

Test-case reuse across forked software projects presents significant opportunities for
enhancing software quality and reducing redundant development effort. In practice,
however, direct reuse is rare because tests are tightly coupled to the source fork’s
APIs, package structure, and build configuration; as forks evolve independently,
refactorings (e.g., renames, moves), signature changes, and behavioral drift rou-
tinely break copy-paste transfers and necessitate targeted adaptations. This thesis
introduces an automated methodology leveraging Large Language Models (LLMs) to
systematically adapt and integrate unit tests into different project contexts within
fork ecosystems. The developed approach comprises pre-build validation, test in-
sertion aligned with the original project structure, an iterative build-adaptation
loop guided by detailed compiler feedback, and comprehensive metrics collection
for subsequent analysis. Empirical evaluation demonstrates the feasibility of this
LLM-assisted adaptation, highlighting its potential to significantly reduce devel-
oper effort, enhance test coverage, and improve overall software quality within fork
ecosystems.

Contents

1 Introduction 1
1.1 Background and Motivation oL, 1
1.2 Problem Statement 1
1.3 Goal and Objectives 2
1.4 Novelty and Contributions 2
1.5 Methodological Overview 3

2 Methodology 5
2.1 Parameters and Defaults 5

2.1.1 Rationale for Parameter Choices 5
2.1.2 Subjects and Selection Criteria 6
2.1.3 Outcome Definitions 7
2.1.4 Manual Soundness Assessment (Spot-Check) 7
2.1.5 Handling Stochasticity 7
2.1.6 Alignment with Research Questions 8
2.2 Experimental Procedure 0oL 8
2.3 Baseline and Analysis Plan 9

3 Implementation 11
3.1 System Architecture Overview 11
3.2 CoreModules 12

3.2.1 Environment Detection and Pre-Build Checks 12
3.22 Test Case Insertion 12
3.2.3 TIterative Build—Adaptation Loop 13
3.24 Metrics Trackingo 13
3.3 Algorithms (Pseudocode), . 14
3.4 Design Details and Engineering Trade-offs 15
3.4.1 Build Invocation and Guardrails 15
3.4.2 Prompt Construction and Response Extraction 15
3.4.3 Safety, Idempotence, and Cleanup 16
3.5 Ilustrative Code Excerpts 17
3.6 Supporting Modules (Dataset Drivers) 19
3.6.1 Dataset Processing and Filtering 19
3.7 Operational Concerns 22
3.7.1 Common Failure Modes and Mitigations 22
3.8 Summary e e 23

Contents

4 Evaluation 25
4.1 Research Questions oL o 25
4.2 Experimental Setup 27

4.2.1 Subjects and Procedure oL 27
4.2.2 Environment o 28
4.2.3 Data Collected 28
4.3 Overall Outcomes 28
4.3.1 Soundness Spot-Check Results 30
4.3.2 Sensitivity analysis: excluding m¢cMMO 31
4.4 Results by Research Question 31
4.5 Breakdown by Clone Typeand Cost 33
4.6 Qualitative Cases (Illustrative) 34
4.7 Threats to Validity o 38
4.8 Summary of Findings Lo o 40

5 Discussion 41

5.1 Synthesis and Implications 41

5.1.1 Interpreting the Soundness Findings 41
5.2 Contributions 41
5.3 Limitations 42
54 Future Work 42

6 Conclusion 45

List of Figures 47

List of Tables 48

List of Algorithms 49

Bibliography 49
.1 Soundness Worksheets 51

1 Introduction

1.1 Background and Motivation

In modern software development, forking has emerged as a critical mechanism to
promote collaborative innovation, allowing isolated experimentation and accelerat-
ing feature development. Platforms like GitHub facilitate this by enabling developers
to create forks of repositories and propose improvements via pull requests. However,
while code reuse is common, test cases essential for ensuring software quality are
often not propagated across forks, leading to inconsistencies in testing and poten-
tial quality degradation. Prior studies on fork ecosystems report that reuse across
divergent forks is generally infrequent and is often handled in ad-hoc ways, which
compound quality risks and maintenance costs [4]. Beyond simple divergence, in-
tegration across forks confronts refactorings, renames, and structural changes that
make direct reuse difficult. Empirical work has shown that merge and integration
conflicts correlate with post-merge defects, underscoring the importance of robust
validation assets such as tests [2]. Within this landscape, the specific opportunity
of test-case propagation has been explored by Mukelabai et al., who identified con-
ditions under which tests can transfer across forks and proposed semi-automated
propagation strategies [8, 9]. These findings suggest that many projects could ben-
efit from tests added elsewhere in the ecosystem, provided that those tests can be
adapted to the target context.

1.2 Problem Statement

The core problem addressed in this thesis is the difficulty of automatically adapting
and integrating relevant test cases from one fork to another within an ecosystem.
While prior work has shown that reusable tests exist [9], the manual effort and techni-
cal challenges involved in modifying these tests to work in a different project context
(e.g., due to API drift, refactorings, package/class renames, or behavioral changes)
often prevent their propagation. This can leave critical vulnerabilities undetected,
undermine software quality, and lead to redundant development efforts [14]. Build-
ing on previous work that identified potentially reusable tests [9], this thesis focuses
on the next step: automating the adaptation process.

2 1 Introduction

1.3 Goal and Objectives

The goal of this thesis is to explore how Large Language Models (LLMs) can help
to automatically adapt and integrate test cases across forked projects by suggesting
necessary code modifications and refactorings. The primary objective is to develop
and evaluate a prototype tool that demonstrates the feasibility of this LLM-assisted
approach. In doing so, the thesis investigates whether LLMs can bridge common
forms of divergence observed across forks (e.g., renames, method signature changes,
or structural refactorings) and thereby reduce the manual effort required for test
reuse [14].

1.4 Novelty and Contributions

The novelty of this research lies in developing an automated workflow that attempts
to integrate a given test case, diagnoses failures, and leverages LLM-driven analysis
to propose solutions for adapting the test code. This differs from manual approaches
or pure static analysis and is motivated by recent advances showing that LLMs can
support refactoring and quality improvement tasks [12, 7|. In adjacent areas of
integration, learning-based tools have been proposed to reconcile code differences
(e.g., MergeBERT, MergeGen, and PLMs for semantic conflict resolution) [13, 3,
15], while structured merge tools such as Spork aim to better handle moves and
renames in Java [6]. Directly within testing, LLM-based repairing of broken unit
tests due to code evolution (e.g., UTFix) demonstrates the potential to adapt tests
under change [10]. Moreover, recent agentic approaches show promise in automating
build preparation and test execution across arbitrary projects, underlining the prac-
tical challenges at the intersection of adaptation and execution [1]. The anticipated
contributions are:

e A prototype tool demonstrating the feasibility of LLM-assisted test-case adap-
tation and integration across forks.

o Empirical insights into the effectiveness and limits of LLMs in handling adap-
tation complexities common in fork ecosystems (from simple renames to more
structural changes).

« Evidence of potential reduction in manual effort for developers seeking to reuse
tests, with implications for test coverage and overall software quality.

e A contribution to automated software engineering on test reuse and LLM-
driven code modification, complementing research on merge/conflict resolution
and test repair.

1.5 Methodological Overview 3

1.5 Methodological Overview

Methodologically, the thesis focuses on the engineering of a prototype tool that takes
potentially reusable test cases (identified through previous work [9]) and attempts to
integrate them into a target project. The core is an automated build-and-adaptation
loop: the tool integrates the test, performs a build, analyzes compilation or link-
age failures, and employs LLM prompts to propose minimal and targeted code ed-
its. Where relevant, the workflow also considers build and execution barriers (e.g.,
project configuration, dependencies), reflecting practical execution challenges noted
in recent agent-based testing work [1]. The empirical evaluation uses a benchmark
of fork pairs derived from prior work [9], reporting success rates and classifying
adaptation outcomes by difficulty (e.g., direct applicability vs. LLM-required re-
pairs), while relating observations to the adaptation phenomena documented in the
literature [8, 4, 2]. The study uses Compilable as its main endpoint (tests build;
Sec. 2.1.3) and audits functional soundness via a focused spot-check on a subset of
results (Sec. 2.1.4).

2 Methodology

This chapter details the methodological approach employed to address the prob-
lem of automated test-case adaptation within fork ecosystems. The methodology
is structured around an automated workflow leveraging Large Language Models
(LLMs), specifically Google Gemini, and comprises four main components: (1) Pre-
build validation and environment configuration, (2) Test case insertion and pack-
aging alignment, (3) Iterative build-adaptation loop, and (4) Metrics collection and
classification.

2.1 Parameters and Defaults

Table 2.1 lists fixed parameters to ensure reproducibility.

Table 2.1: Experimental parameters and defaults.

Parameter Value

LLM model Google Gemini (Gemini 2.5-flash)

Sampling temperature=1.0; top_ p=0.95

Retries / attempts N=3 adaptation attempts per task

Platform OS = mac0S; JDK = 1.8; Maven versions = 3.9.11
Build-system scope Maven-only in evaluation; Gradle (experimental and disabled)
Hardware CPU = M2 Pro, RAM = 16 GB (for runtime comparability)
Randomness control Seed = 30 (where applicable)

Success criterion Compilable test (see Sec. 2.1.3)

2.1.1 Rationale for Parameter Choices

LLM choice: Gemini 2.5-flash. I selected Gemini 2.5-flash for its low laten-
cy/cost (enabling multiple attempts), large context window (accommodating tests,
UUT snippets, and diagnostics), and empirically minimal, patch-style edits in pilot
runs and occasional large rewrites.

6 2 Methodology

Sampling: temperature=1.0, top_p=0.95. LLM decoding must balance explo-
ration (to escape a failing fix) with stability (to remain faithful to compiler feed-
back). I therefore keep top_p slightly conservative at 0.95 to trim low-probability
tails (reducing erratic, off-distribution code), while setting temperature to 1.0 to
maintain diversity among attempts. In pilot runs, lower temperatures (< 0.5)
tended to repeat the same failing fix across attempts (poor exploration), whereas
higher-p nucleus or unconstrained sampling increased spurious edits (e.g., renam-
ing public APIs unnecessarily). The chosen pair yielded the most distinct yet
diagnostic-aligned patches across successive attempts, which is exactly what the
loop exploits.

Retry budget: N=3 attempts. The cap of three adaptation attempts reflects a
pragmatic optimum among diminishing returns, cost/latency, and fairness
across tasks. First, most benefits arrive early: in my study, successes among LLM-
triggered cases typically occurred by attempt 2, and overall I observed that a
majority of repaired cases completed within at most three attempts, with
the median success at attempt 2. Second, each extra attempt incurs a full
project rebuild plus an LLM call; beyond three, the marginal gain was small while
wall-clock time and token usage rose sharply. Third, fixing N globally preserves
comparability across tasks (avoiding giving some tasks effectively more compute).
I additionally allow a single controlled re-run in the sensitivity analysis to gauge
stochastic variance, but I report primary outcomes under the fixed N=3 budget for
reproducibility.

2.1.2 Subjects and Selection Criteria

I selected fork pairs from public Java projects with the following criteria:
« Java/Maven projects with a compilable baseline.!

e Source test available in the origin fork and a corresponding UUT path in the
target.

e No proprietary dependencies required to compile tests.

Exclusion criteria:
e Projects failing a clean pre-build after one automated fix attempt on pom.xml.
e Targets requiring credentials or non-public artifacts.

o Gradle-based targets (experimental Gradle support not used in this evalu-
ation).

'The prototype contains code paths for Gradle detection/builds, but this functionality is not
finished; Gradle support was disabled for this study.

2.1 Parameters and Defaults 7

2.1.3 Outcome Definitions

I distinguish three outcome levels:

1. Compilable: the adapted test compiles under the target project without
errors.

2. Executable: the test runs without infrastructure-level failures (“harness er-
rors”, i.e., issues from the test runner, plugins, or classpath rather than asser-
tion outcomes). This criterion was not enforced in the main study.

3. Sound: the adapted test preserves the original testing intent.

Unless stated otherwise, “success” refers to the Compilable level. I report Ezecutable
and Sound assessments where available.

2.1.4 Manual Soundness Assessment (Spot-Check)

To estimate whether compilable adaptations preserved the original testing intent, I
conducted a manual spot-check on a stratified subset of LLM-affected successes (i.e.,
cases that required the LLM to make the test compilable).

Decision rule. 1 deem an adapted test Sound if the following hold: (i) the oracle
equivalence criterion is satisfied (the target test asserts the same property as the
source test: same value/exception/relation, allowing for benign renamings and small
API differences), and (ii) the test is non-vacuous (it would fail if the property were
made false). If intent is preserved but scope is slightly reduced due to missing minor
APIs or removed ancillary checks, I record Probably-sound. Otherwise, I record
Unsound.

Procedure. For each source—target pair in the sample, I (1) compared scenari-
o/inputs, (2) compared focal calls (class.method under test), and (3) compared the
oracle(s) (asserted value/exception/relation). Where feasible, I performed a light
non-vacuity check by temporarily negating the central assertion to verify the test
fails. I documented a one-line justification with each verdict. Detailed worksheets
are provided in Appendix .1.

2.1.5 Handling Stochasticity

LLM outputs are stochastic. I fix sampling parameters (Table 2.1) and cap attempts
at N=3. To assess variance, I permit at most one controlled re-run for failures in
the sensitivity analysis and report any deltas separately.

8 2 Methodology

2.1.6 Alignment with Research Questions

RQ1 evaluates first-fix efficacy after failed insertion (metrics: success at attempts
2-3). RQ2 targets basic refactorings (tracked by clone-type labels and resolved diag-
nostics). RQ3 concerns complex edits (Type-3/4) and their success rates. RQ4 com-
pares against a direct-copy baseline (attempt 1, no LLM). All metrics are logged per
task for stratified analysis by clone type and attempt index.

2.2 Experimental Procedure

The end-to-end procedure is summarized below; implementation details (CLI invo-
cations, regex diagnostics, prompt construction, file I/O) are described in Chapter 3
(see in particular Sec. 3.2.3 and Sec. 3.2.4).

1. Pre-build check. Detect the build system; in this study I restrict execu-
tion to Maven (Gradle code path left disabled). Compile the target project in
isolation; if enabled, attempt a single LLM-guided pom.xml fix. If the project
remains non-compilable, exclude it (Sec. 2.1.3).

2. Test placement. Copy the source test into src/test/java/... of the tar-
get, preserving the package declaration.

3. Iterative adaptation (up to N=3 attempts).
a) Compile; if success, stop and record the attempt index.

b) Parse compiler diagnostics (unresolved symbols/imports, signature mis-
match, package/class issues).

¢) Build an LLM prompt from {original test, UUT snippet(s), diagnostics};
apply the returned patch to the test and retry.

4. Instrumentation. Log per-attempt results, timings, and (when applicable)
clone-type labels into a JSON metrics file for later analysis (Chapter 4).

For completeness, the algorithmic sketch is:

for task in tasks:
ensure_prebuild_ok(target) or exclude
place_test(source_test -> target/src/test/java/...)
for i in 1..N:
ok, diag = compile(target)
if ok: record_success(i); break
patched = LLM_adapt({test, UUT, diag})
write_test(patched)
if not ok: record_failure(N)

2.3 Baseline and Analysis Plan 9

2.3 Baseline and Analysis Plan

Baseline. I define a direct-copy baseline as attempt 1 without LLM involvement;
improvements are counted as additional successes achieved at attempts 2-3. If
attempt 1 fails for any reason, the baseline outcome for that task is “fail”. I use
an intrinsic baseline: attempt 1 (no LLM). The external baseline against manual
propagation from ASE’23, as planned, is deferred due to time; thus I limit claims to
improvements over direct-copy within our cohort.

Analysis. I report proportions with 95% Wilson intervals, medians and ranges for
times, and stratify results by attempt index and clone-type label. Given the sample
size, I refrain from null-hypothesis significance testing and emphasize effect sizes and
intervals.

3 Implementation

This chapter details the architecture and concrete implementation of the prototype
tool for automating test-case adaptation in fork ecosystems. Beyond summarizing
the core modules and data flow, it dives into design decisions, failure handling,
and guardrails that proved crucial in practice. Short, illustrative code excerpts are
included for key driver scripts used during bulk evaluation. The codebase contains
Gradle-specific stubs (detection, error parsing, build invocation), but Gradle support
is experimental and was not exercised in the evaluation; all experiments ran on
Maven projects.

3.1 System Architecture Overview

The adaptation logic is implemented in Python under src/, organized into:

o main.py: Orchestrates the end-to-end workflow (pre-build, insertion, adapta-
tion loop, metrics).

e java_env_manager.py: Detects build system (Maven/Gradle), enforces JDK 8,
invokes builds.

e utils.py: Helpers for path normalization, regex error parsing, GitHub fetch,
code-block extraction.

e 11m_analyzer.py: Constructs prompts and parses LLLM responses for adap-
tation and build fixes.

e metrics_tracker.py: Collects and persists adaptation metrics to JSON.

Workflow: Pre-build — Test insertion — Adaptation loop (build & LLM)
— Metrics — Finalization

Figure 3.1: High-level architecture and data flow.

File layout and data artifacts. FEach adaptation run manipulates only a working
copy of the target repository. Persistent artifacts are: (i) the inserted test file
(created under src/test/java/...), (ii) adaptation_metrics. json with attempt-
level telemetry, and (iii) optional pom.xml patches if the pre-build configuration-fix
feature is enabled (§3.2.1).

12 3 Implementation

3.2 Core Modules

3.2.1 Environment Detection and Pre-Build Checks

main.py first establishes the build environment:

1. Build-system detection. We prefer Maven (presence of pom.xml); a Gra-
dle branch exists but is disabled for evaluation to avoid confounds across
toolchains.

2. JDK pinning. The tool constrains the Java toolchain to JDK 8 for repro-
ducibility.!

3. Baseline build. A clean test-compile (mvn clean test-compile -DskipTests)
ensures the target compiles prior to any modification.

4. Optional config fix. If the baseline fails for configuration reasons (e.g.,
missing maven-compiler-plugin, invalid maven-surefire-plugin version,
source/target mismatch), the tool can synthesize a minimal patch via the LLM.
The patch is applied only if it parses as XML, contains a single plugin or prop-
erty change, and round-trips through an XML validator. This guardrail avoids
overfitting the build file to the inserted test case.

All outcomes are recorded via metrics_tracker.GlobalMetrics with timestamps
and return codes.

3.2.2 Test Case Insertion

If the project builds cleanly:

o The source test is fetched (local path or GitHub raw content) and its declared
package guides the insertion path under src/test/java/....

o A safety check rejects overwriting existing files unless -force is set.

e The insertion step verifies that the resulting path is within the repo root
(protecting against path traversal in malformed packages).

"Newer JDKs often tighten module encapsulation and deprecations, confounding build outcomes
across projects.

3.2 Core Modules 13

3.2.3 Iterative Build—Adaptation Loop

The loop attempts up to N times (default 3):

1. Rebuild and capture diagnostics (stdout/stderr).

2. Parse errors with build-aware extractors (e.g., cannot find symbol, incom-
patible types, missing imports, changed signatures).

3. Assemble context by reading the current test and the relevant UUT file(s).

4. Prompt the LLM with a constrained template (Section 3.4.2).

5. Validate and apply only if a single Java class is extractable; non-code tokens
are ignored.

6. Record metrics per attempt (error kind, response length, success).

3.2.4 Metrics Tracking

metrics_tracker.py persists:

o Pre-build status and whether a configuration fix was attempted/applied.

e Per-attempt error types, LLM response length, compilation outcome.

 Final disposition (success/failure), total attempts, and wall-clock durations.

At exit, finish_tracking() writes adaptation_metrics.json. Metrics are de-
signed to be append-only for idempotence across retries.

14

3.3 Algorithms (Pseudocode)

3 Implementation

Algorithm 1 End-to-End Adaptation Orchestrator (main)

Require: source test code T, source test path ps, target root R, UUT relpath u,

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

max attempts NV

bs <— DETECTBUILDSYSTEM(R) > Maven expected; Gradle disabled

(¢, out, err) < BUILD(R, bs)
if ¢ # 0 then
if CONFIGFIXALLOWED() then
P < CoNSTRUCTPOMFIXPROMPT(err, pom. xml)
X + QUERYLLM(P)
if EXTRACTXML(X) then
APPLYPATCH(pom. xm1, X)
(c,out, err) + BUILD(R, bs)
end if
end if
if ¢ # 0 then
return RECORDPREBUILDFAIL()
end if
end if
t < INSERTTEST(T, ps, R)
success < ADAPTATIONLOOP(t, R, u,bs, N)
if —success and CLEANUPONFAILURE() then
RESTOREORREMOVEINSERTEDTEST(?)
end if
return FINISHTRACKING()

3.4 Design Details and Engineering Trade-offs 15

Algorithm 2 Iterative Build—Adaptation Loop
Require: test file ¢, target root R, UUT relpath u, build system bs, max attempts
N
1: C < READFILE(?)
2: fort=1to N do

3: (c,out, err) <— BUILD(R, bs)

4: if ¢ =0 then

5: RECORDATTEMPT(i, success = true); return true
6: end if

7: E < PARSEERRORS(out or err, bs)

8: U < READFILE(R|u)

9: P + CoNSTRUCTADAPTPROMPT(C, E,U)

10: C + QUERYLLM(P); C' + EXTRACTJAVA(C)
11: if ¢’ = NONE then

12: RECORDATTEMPT (i, success = false); break
13: end if

14: WRITEFILE(t, C"); C + C'

15: RECORDATTEMPT(i, success = false)

16: end for

17: return false

3.4 Design Details and Engineering Trade-offs

3.4.1 Build Invocation and Guardrails

Maven is invoked via java_env_manager.invoke_maven_build, defaulting to clean
test-compile -DskipTests. We intentionally avoid running tests during adapta-
tion to (i) reduce flakiness, and (ii) make compilation the decisive gate. For repro-
ducibility, environment variables JAVA_HOME (JDK 8) and MAVEN_OPTS are pinned
when set by the driver.

3.4.2 Prompt Construction and Response Extraction

11lm_analyzer.py composes prompts with four blocks: (i) a concise instruction
framing the task as adapting (not re-implementing) the test; (ii) the failing test;
(iii) the UUT excerpt; and (iv) a truncated build log (first/last k lines). The
model is asked to return only one Java class inside a code fence. The extractor
accepts:

e A single "¢ java fenced block; alternative fences are rejected.

o Files with a matching package header if present in the original test.

16 3 Implementation

o ASCII-only output to avoid invisible characters corrupting the file.

If extraction fails, the attempt is recorded and the loop terminates early to preserve
the baseline test for analysis.

3.4.3 Safety, Ildempotence, and Cleanup

Two invariants keep runs analyzable:

1. Idempotent builds: the driver may re-run the same row; metrics append
with a fresh UUID but avoid overwriting prior JSON.

2. Conservative edits: only the inserted test file and, optionally, pom.xml can
change; the driver blocks edits to src/main to prevent “repairing” production
code.

On failure, CleanupOnFailure controls whether the inserted test is deleted or left
for postmortem inspection.

3.5 Illustrative Code Excerpts

3.5 lllustrative Code Excerpts

Orchestrator (main.py): loop skeleton

Listing 3.1: Adaptation loop (simplified)

17

def adaptation_loop(test_file, target_root, class_relpath, build_system,
max_attempts, api_key):
current_code = open(test_file, encoding="utf-8").read()
for attempt in range(l, max_attempts + 1):
code, out, err = invoke_build(target_root, build_system)
if code ==
global_metrics.record_adaptation_attempt (attempt, True)
return True

Parse diagnostics (Maven vs. Gradle)
try:
parsed = parse_build_error(out or err, build_system)
err_msg = parsed.get("raw_message") or str(parsed)
except Exception:
err_msg = err or out

Gather UUT, construct prompt, ask LLM
cls_path = os.path.join(target_root, class_relpath)
target_code = open(cls_path, encoding="utf-8").read()
prompt = construct_llm_prompt (
original _test_case_code=current_code,
parsed_build_error=err_msg,
target_class_code=target_code,
target_class_name=os.path.basename(cls_path),
build_file_content=None,
build_file_name="",
)
suggestion = query_llm(prompt, api_key)
new_test = extract_java_code_from_llm_response(suggestion)
if not new_test:
break
open(test_file, "w", encoding="utf-8").write(new_test)
current_code = new_test

code, out, err = invoke_build(target_root, build_system)
if code ==
global _metrics.record_adaptation_attempt (attempt, True)
return True

global_metrics.record_adaptation_attempt (attempt, False)
return False

18 3 Implementation

Build detection and Maven invocation (java_env_manager.py)

Listing 3.2: Build system detection and Maven build

def detect_build_system(project_dir: str) -> str:
if os.path.exists(os.path.join(project_dir, "pom.xml")):
return "maven"
if os.path.exists(os.path.join(project_dir, "build.gradle")):
return "gradle"
return "unknown"

def invoke_maven_build(project_dir: str, command=None):
command = command or ["mvn", "clean", "test-compile", "—DskipTests"]
proc = subprocess.run(command, cwd=project_dir,
capture_output=True, text=True)
return proc.returncode, proc.stdout, proc.stderr

Error parsing (Maven) (utils.py)

Listing 3.3: Regex-oriented Maven error parsing

def parse_maven_error(error_output: str) -> dict:
nmnn

Parses Maven error output to extract key error information.
nimn
if not error_output:
return {"error_type": "unknown", "message": "No error output

provided"}
lines = error_output.strip().split("\n")

first_error_index = -1
for i, line in enumerate(lines):
s = line.stripQ)
if s.startswith("[ERROR]") and (
"Failed to execute goal" in s
or "COMPILATION ERROR" in s
or "cannot find symbol" in s
or "Compilation failure" in s
or "Inkompatible Typen" in s
or "Symbol nicht gefunden" in s

):
first_error_index = i
break
if first_error_index == -1:

for i, line in enumerate(lines):
if line.strip().startswith("[ERROR]"):

3.6 Supporting Modules (Dataset Drivers)
first_error_index = i
break
if first_error_index == -1:
return {"error_type": "unknown", "message": error_output,

"raw_message": error_output}

error_lines = lines[first_error_index:]

return {"error_type": "compilation_error",
"message": "Maven build failed",
"raw_message": "\n".join(error_lines)}

19

3.6 Supporting Modules (Dataset Drivers)

The following two scripts operationalize the experiments at scale. They are inten-
tionally I/O bound, stream the dataset, and keep memory footprint modest. The
excerpts below are abridged for readability (logging, argument validation, and edge-
case handling trimmed); the actual repository contains additional checks (timeouts,

retry backoffs, and resume).

3.6.1 Dataset Processing and Filtering

scripts/write_matching_projects.py. Streams a large semicolon-separated CSV
and selects rows where the UUT basenames match. This improves precision by pre-

ferring fork pairs that kept class names stable.

Listing 3.4: Core filtering loop in write_matching_projects.py (abridged)

import argparse, csv, o0s, Sys

def basename_no_ext(path: str) -> str:
base = os.path.basename(path)
return base[:-5] if base.endswith(".java") else base

def row_matches(row: dict) -> bool:
src = basename_no_ext (row["sourceUUT"])
tgt = basename_no_ext (row["targetUUT"])
return src.lower() == tgt.lower()

def main():
ap = argparse.ArgumentParser ()
ap.add_argument ("--in", dest="input_csv", required=True)
ap.add_argument ("--out", dest="output_csv", required=True)
ap.add_argument ("--1imit", type=int, default=0,
help="max rows to write; 0 = all")

20 3 Implementation

args = ap.parse_args()

n_written = 0
with open(args.input_csv, newline="", encoding="utf-8") as fin, \
open(args.output_csv, "w", newline="", encoding="utf-8") as fout:

rdr = csv.DictReader(fin, delimiter=";")
wtr = csv.DictWriter(fout, fieldnames=rdr.fieldnames, delimiter=";")
wtr.writeheader ()

for row in rdr:
if row_matches(row):
wtr.writerow(row)
n_written += 1
if args.limit and n_written >= args.limit:
break

print(f" [match] wrote {n_written} rows to {args.output_csv}")

if __name__ == "__main__":
main()

Design notes. (i) Case-insensitive comparison tolerates naming style drift; (ii)
deliberately avoids normalizing package paths to not assume common roots; (iii)
accepts an explicit -1imit to generate a quick pilot subset for prompt calibra-
tion.

3.6 Supporting Modules (Dataset Drivers) 21

scripts/process_dataset.py. Runs the end-to-end adaptation over the filtered
CSV. It clones target repositories, verifies pre-build, fetches the source test, and calls
the orchestrator. Rows produce one metrics file per run.

Listing 3.5: Dataset driver (compact)

import os, sys, subprocess, pandas as pd
from pathlib import Path

project_root = Path(__file__).resolve() .parents[1]
sys.path.insert(0, str(project_root))

from src.main import main as run_adaptation_workflow
from src.utils import get_code_from_github

def clone_repo(project_name: str, projects_base_dir: str) -> Path:
dest = Path(projects_base_dir) / project_name.replace("/", "_")
if not dest.exists():
subprocess. run(
["git", "clone", f"https://github.com/{project_name}.git", str(
dest)],
check=True
)

return dest

def format_file_path(file_path: str, project_name: str) -> str:
p = file_path.replace("\\", "/")
proj = project_name.replace("\\", "/")
i = p.lower().rfind(proj.lower())
if 1 '= -1:
p = pli + len(proj):].1lstrip("/")
return p.split("src/", 1)[-1] if "src/" in p else p

def extract_info_from_row(row) —-> dict:
return {

"source_project": row["sourceUUTProject"],

"target_project": row["targetUUTProject"],

"source_test_path": format_file_path(row["testCaseSourceFilePath"],
row["sourceUUTProject"]),

"target_uut_path": format_file_path(row["targetUUTFilePath"],
row["targetUUTProject"]),

}

def process_dataset(csv_path: str, projects_dir: str, n: int = 100,
attempts: int = 4):
df = pd.read_csv(csv_path, sep=";")
for _, row in df.head(n).iterrows():
info = extract_info_from_row(row)
repo = clone_repo(info["target_project"], projects_dir)
code = get_code_from_github(info["source_project"], infol["

22

if

3 Implementation

source_test_path"])

if not code:
continue

run_adaptation_workflow(
original _test_case_code=code,
source_test_origin_path=info["source_test_path"],
target_project_path=str(repo),
target_class_relative_path=info["target_uut_path"],
max_attempts=attempts,
source_project_name=info["source_project"],
target_project_name=info["target_project"],
cleanup_on_failure=True,

__name__ == "_main_ _":
process_dataset (
csv_path=str(project_root / "data/
testcaseTargetUUTPairMatchingSourceCompile3.csv"),
projects_dir=str(project_root / "data/projects"),
n=100

Design notes. The driver uses clones inside a temporary directory, so each row is
isolated and leaves no residue (except metrics). A pre-build gate prevents spending
LLM tokens on projects that fail even without the inserted test. The run_adaptation
wrapper simply prepares arguments and delegates to the orchestrator shown in Al-
gorithms 1-2.

3.7 Operational Concerns

3.7.1 Common Failure Modes and Mitigations

o Imports drift: Missing static imports or JUnit 4/5 API drift is common;
prompts include a “prefer minimal import edits” instruction, and the extractor
rejects multi-file responses.

o Signature divergence: Renamed methods/parameters are addressed by pro-
viding the exact failing line and the UUT method signatures in the prompt.

e Build-file over-editing: POM patches are limited to a single plugin stanza
or maven.compiler.source/target pair; anything larger is discarded.

3.8 Summary 23

3.8 Summary

The implementation cleanly separates: (1) adaptation core (environment, errors,
LLM, metrics), (2) dataset drivers (bulk processing, row filtering), and (3) utilities
(paths, GitHub fetch, code extraction). The algorithms abstract the behavior inde-
pendent of libraries, while the listings demonstrate the concrete realization used in
the Maven-based experiments. The engineering choices: fail-fast pre-build checks,
conservative extractors, and isolated per-row workspaces were essential to keep runs
analyzable, reproducible, and cost-aware.

4 Evaluation

This chapter evaluates the prototype described in Chapters 2-3 on a set of Java
fork pairs. I organize the analysis around the research questions (RQs) and report
empirical results collected by the tool’s metrics logger.

4.1 Research Questions

I structure the evaluation around four research questions that operationalize the
goal of LLM-assisted adaptation. The measures align with the methodology and
analysis plan defined in Chapter 2.

RQ1 — Diagnosis & first fixes. Can an LLM-based diagnosis—and-repair loop fix a
failed direct insertion? Rationale: After a naive copy—paste of a source test into the
target, many failures are due to missing symbols, signature mismatches, or packaging
issues. Operationalization: I trigger the LLM loop only when attempt 1 fails.
Success for RQ1 is a compilable test within at most N=3 attempts. I report: number
of LLM-triggered tasks, success rate among them, success attempt index, and wall-
clock time (all from the metrics log). This matches the “alignment with RQs” and
attempt-indexed metrics specified in the methodology.

RQ2 — Basic refactorings. 7o what extent can the approach perform simple refac-
torings (renames, parameter changes, imports)? Rationale: Near-miss divergences
between forks frequently require straightforward edits rather than deep semantic
changes. Operationalization: For tasks that invoke the LLM, I record a clone-
type label and the dominant diagnostic category. I evaluate RQ2 on cases consistent
with near-miss adaptation (e.g., Type-3 labels or errors pointing to renamed class-
es/methods or changed parameters) and report success rates, attempt indices, and
representative edit patterns.

RQ3 — Complex/semantic adaptations. Can the approach handle non-local or
semantic edits (akin to Type-4 relations)? Rationale: Some adaptations require re-
structuring beyond simple renames. Operationalization: I consider cases labeled
as Type-4 (or exhibiting non-local edits) and measure compilable success within
N=3 attempts, with attempt index and time. Because compilability may not imply

26 4 FEvaluation

intent preservation, I complement the primary metric with spot soundness checks
on a small sample and report the results in Sec. 4.3.1.

RQ4 — Baseline comparison. How does the automated approach compare to a
direct-copy baseline? Rationale: The intrinsic baseline is the outcome of attempt 1
without any LLM involvement. Operationalization: I count attempt 1 successes
as the baseline and attribute any additional successes at attempts 2-3 to the LLM
loop. I report absolute and relative gains in success rate and summarize time costs
by attempt. This follows the baseline and analysis plan defined in the methodol-

ogy.

Together, RQ1-RQ3 assess capability across increasing adaptation difficulty, while
RQ4 quantifies added value over direct reuse.

Operational clone-type definitions (used for RQ2/RQ3)

Following Roy and Cordy [11], T use clone types as an operational lens rather than
gold-standard labels: they are assigned by the LLM from compiler diagnostics and
code snippets to guide analysis.

Type-2 (near-copy with lexeme changes). Same structure/control flow as the source
test; differences confined to identifiers/literals/formatting. In this pipeline, a
Type-2 adaptation is expected to be achievable with test-local edits only (re-
names, imports, minor signature adjustments). The tool does not edit pro-
duction code.

Type-3 (near-miss). Statement-level edits (add/remove/reorder) are needed but
the test still targets the same feature/UUT. Allowed adaptations include small
restructurings inside the test, mock rewiring, and assertion rewrites, again con-
fined to the test file (plus minimal build-file tweaks).

Type-4 (semantic). Same intent realized through a different API/design; the test
must be rewritten to call different methods/classes or a thin shim. In this
study, “non-local” means conceptually non-local (different API surface) while
edits remain physically local to the test file.

4.2 Experimental Setup 27

4.2 Experimental Setup

4.2.1 Subjects and Procedure

I evaluated on 26 source—target fork pairs drawn from public Java Maven projects
(examples include remoting, jeromq, JSqlParser, storm-crawler). The prototype
contains Gradle code paths, but Gradle support is unfinished and was disabled for
this run. For each pair the tool (i) verified the target project builds in isolation, (ii)
inserted the source test into src/test/java/... of the target, and (iii) executed
up to N=3 adaptation attempts. On each failed attempt, compiler diagnostics and
relevant code were fed to Google Gemini to propose a patched test; the build was
re-tried until success or attempts were exhausted. All outcomes and timings were
recorded to adaptation_metrics. json.

Selection of Fork Pairs

The 26 source—target fork pairs were derived in two stages designed for reproducibil-
ity, control of confounders, and computational feasibility.

Stage 1: Candidate subsampling from a published corpus. 1 started from the
public CSV of matched test-UUT pairs reported by Mukelabai et al. (ASE 2023)
[9], namely data/testcaseTargetUUTPairMatching.csv. From this large corpus, I
produced a deterministic random subsample of 1,000 candidate pairs using:

python scripts/write_matching projects.py \
data/testcaseTargetUUTPairMatching.csv \
data/testcaseTargetUUTPairMatchingSourcel1000.csv \
1000 --seed 30

The parameter 1000 bounds the candidate set size to a tractable workload while
maintaining diversity; -seed 30 fixes the random stream so the same 1,000 pairs
can be reproduced exactly.

Stage 2: Eligibility by pre-build (Maven-only). Given that Gradle support in
my prototype is unfinished, I restricted the evaluation to Maven projects to avoid
build-system variance. I then filtered the subsample to targets that successfully
built in isolation before any test insertion. This pre-build gate removes projects
that are broken, misconfigured, or environment-incompatible, so later failures can
be attributed to the adaptation itself rather than latent build issues. The filter was
executed with:

28 4 FEvaluation

dataset_file: data/testcaseTargetUUTPairMatchingSourcel000.csv

compile_csv: outputs/prebuild_compiles.csv

projects_dir: workspace/projects
filter_projects_by_prebuild(dataset_file, compile_csv, projects_dir)

After applying this gate (and the Maven-only restriction), 26 source-target pairs
remained and formed the evaluation cohort.

Justification. Internal validity: The pre-build requirement ensures that the out-
come “success = compilable after adaptation” is not confounded by unrelated build
breakage. Reproducibility: Both the subsampling and the eligibility filter are scripted
and parameterized (file paths, sample size, seed, and workspace), so the exact cohort
can be regenerated. Feasibility: The 1,000-pair subsample bounds cloning/compila-
tion time, while the pre-build gate narrows to a realistic set of adaptation candidates
(n=26) under the Maven-only constraint used in this study.

4.2.2 Environment

As implemented, the tool auto-detects Maven/Gradle and enforces a fixed JDK for
test compilation; in this study I restricted execution to Maven builds only. Con-
sequently, no Gradle builds were executed, and no automated Gradle-file repairs
were evaluated. All Maven targets in this run passed the pre-build check, so no
automated pom.xml fixes were required. This aligns with the workflow introduced
in Chapter 2.

4.2.3 Data Collected

For each pair I logged: success/failure, number of attempts, whether an LLM was
used, clone classification (Type-2/3/4) when LLM analysis was triggered, execution
time, the length of the LLM’s response (as a coarse proxy for cost), and manual
soundness verdicts (Sound/Probably-sound/Unsound) for a stratified subset (4.3.1)
[11].

4.3 Overall Outcomes

Table 4.1 summarizes key results. Values are computed directly from the metrics
file.

Two immediate observations follow. First, naive copy—paste yielded 11/26 successes;
adding the LLM-based loop raised the total to 18/26, an absolute gain of 26.9
percentage points (from 42.3% to 69.2%)—a relative improvement of 63.6% over

4.3 Overall Outcomes 29

Table 4.1: Overall outcomes across 26 adaptation tasks.

Metric Value
Total adaptations 26
Successful adaptations 18
Overall success rate 69.2%
Directly applicable (no LLM, attempt=1) 11 (42.3%)
LLM used (initial copy failed) 15
Successes among LLM cases 7 (46.7%)
Success by attempt (1/2/3) 11/5/2
Avg. execution time (all) 136.25s (median 61.36s)
Median time by attempt (1/2/3) 6.58s / 72.42s / 163.81s

the direct baseline. Second, all 11 non-LLM tasks succeeded on attempt 1 (by
design, the LLM loop only runs after a failure), whereas the 15 LLM-driven tasks
achieved 5 successes on attempt 2 and 2 on attempt 3; the remaining 8 consumed
all 3 attempts without success. These counts, attempts, and timings come from the
run-time metrics.

For completeness, a 95% Wilson interval on the overall success rate is [50.0%, 83.5%],
reflecting the modest sample size (26 pairs). For the 15 LLM-triggered cases, the
95% interval is [24.8%, 69.9%]. (Intervals are computed over the metrics file’s out-
comes.)

30 4 FEvaluation

4.3.1 Soundness Spot-Check Results

I reviewed 7 LLM-affected successes. Of these, 3/7 were Sound (42.9%; 95% CI:
15.8-75.0), 2/7 were Probably-sound, and 2 /7 were Unsound. Collapsing Sound+Probably-
sound yields 5/7 (71.4%; 95% CI: 35.9-91.8), indicating that a majority of LLM-
enabled compile successes likely preserved intent, though not all did.

Project Verdict One-line rationale

IronMQ Sound Same CRUD/queue lifecycle scenarios and error handling;
only framework/package adjustments.

shiroredis Sound Same scenarios (update/delete/activeSessions), same focal

DAO calls and oracles; API diffs handled via mocks.
JSQLParser Probably-sound Core parsing inputs/oracles identical; advanced features
absent in target removed, core intent preserved.

lightcouch Sound Same view/query APIs and oracles; Hamcrest <> JUnit
assertion syntax only; JSON encoding change keeps
meaning.

geometry-api Unsound Assertion semantics diverge (equals vs. Equals); one
conversion test path had no effective oracle.

javaewah Probably-sound Identical scenarios/oracles; bitmaps materialized differently
(mapped vs. serialized) but tested properties align.

obd-java-api ~ Unsound Oracle changed across exception types and classes under test

(UnsupportedCommandException vs.
MisunderstoodCommandException).

Table 4.2: Manual soundness spot-check on LLM-affected successes. Detailed work-
sheets appear in Appendix .1.

4.4 Results by Research Question 31

4.3.2 Sensitivity analysis: excluding mcMMO

I ran the tool on the same fork pairs but omitted the mecMMO pair due to its extreme
runtime (1,358.6s) and unresolved dependency issues. Across 25 tasks, I observed
18 successes (72.0%, 95% Wilson [52.4%, 85.7%]). The directly applicable tests
remained 11/25 (44%) and the LLM was activated 14 times with 7 successes (50.0%,
95% [26.8%, 73.2%]). Successes by attempt were shifted to 11/3/4 (attempts 1/2/3).
The average runtime dropped to 91.43 s (min 3.56 s, max 419.66 s), consistent with
removing the mcMMO outlier.

Table 4.3: Rerun outcomes across 25 tasks (mcMMO excluded).

Metric Value
Total adaptations 25
Successful adaptations 18 (72.0%)
Directly applicable (no LLM, attempt=1) 11 (44.0%)
LLM used (initial copy failed) 14
Successes among LLM cases 7 (50.0%)
Success by attempt (1/2/3) 11/3/4
Avg. execution time (all) 91.43s
Min / Max time 3.56s / 419.66s

4.4 Results by Research Question

RQ1 — Can the LLM diagnose build failures and suggest useful initial
fixes?

In 15/26 tasks the initial copy—paste broke the build, triggering the LLM loop.
Among these, 7/15 (46.7%) were repaired to a compilable state within at most
three attempts (median success attempt=2). Unsuccessful cases (8/15) typically
exhausted all three attempts. The LLM loop is substantially costlier in wall time:
LLM-involved tasks had a median of 142.36s vs. 6.58s for the direct successes. These
results indicate that the LLM can often localize and fix straightforward incompatibil-
ities after a failed insertion, but not reliably so for all divergence types. All numbers
in this paragraph are taken from adaptation_metrics. json.

RQ2 — Can the LLM perform basic refactorings (renames, simple
parameter changes)?

Under the operational scope above (test-local edits only), the tool recorded instrument-
derived clone-type labels whenever the LLM was invoked. For Type-3 cases, near-

32 4 FEvaluation

miss edits inside the test, the tool succeeded in 5/8 (62.5%) tasks, typically via re-
names, import updates, assertion rewrites, or small restructurings (e.g., JSqlParser,
LightCouch, iron_mq_java). By contrast, Type-2 cases in this cohort were 0/5:
although canonically “easy,” most of these required renames or moves in produc-
tion types or method signatures (diagnostics: cannot find symbol, incompatible
types), which the methodology deliberately disallows. Thus, within our constraints,
“basic refactorings” are solvable when changes are test-local, but not when the ap-
parent Type-2 divergence resides outside the test file.

This capability directly addresses a limitation observed in prior non-LLM tool-
ing focused on test recommendation rather than adaptation: for example, Kramer
reports that when class or method names diverge across forks, recommendations
were not issued (e.g., "Class was refactored with different naming" and "Function
was refactored with different naming" in the test suite on pp. 24-25), which pre-
vents propagation without manual work [5]. Our LLM-based approach, evaluated
on adaptation rather than recommendation, overcame several such rename scenar-
ios.

RQ3 — Can the LLM handle more complex adaptations
(Type-4/semantic)?

I observed 2 Type-4 cases; both compiled within three attempts (2/2). In each,
the LLM redirected calls to an alternative API available in the target (imports/-
mocks/shims) without modifying production code, consistent with the operational
definition. The soundness spot-check (Tab. 4.2) found shiro-redis Sound and
obd-java-api Unsound due to a changed exception taxonomy. This underscores
that for Type-4, compilability indicates a successful redirection, whereas soundness
must be verified separately (Sec. 4.3.1).

RQ4 — How does the automated approach compare to a baseline?

The evaluation plan in the proposal envisioned a direct comparison to the ASE’23
manual adaptation baseline; I did not re-run or reproduce that baseline here. In-
stead, I use a pragmatic baseline intrinsic to our workflow: direct applicability (copy—
paste without any LLM intervention). Against this baseline, the LLM loop added
7 further successes on top of the 11 direct ones, improving the success rate from
42.3% to 69.2% across the same 26 tasks (4+26.9 percentage points / +63.6% rel-
ative). This quantifies the additional value of automated adaptation beyond naive
reuse.

For context, work by Kramer targeted the applicability problem in the IDE and
reported that exact or near-exact matches were suggested while refactoring-induced

4.5 Breakdown by Clone Type and Cost 33

divergences were not (Section 5.2 and the limitation on refactorings in Section 6.3),
which is orthogonal but complementary to our evaluation focus on post-selection
adaptation [5].

4.5 Breakdown by Clone Type and Cost

Clone-type success. The classification distribution among LLM-triggered tasks
was: Type-2 (5), Type-3 (8), Type-4 (2). Success rates were 0/5 for Type-2, 5/8 for
Type-3, and 2/2 for Type-4. (Note: "Unclassified" corresponds to direct successes
where the LLM was not invoked.)

Why did Type-2 underperform (0/5) here? Although Type-2 is canonically “easy,”
the five Type-2-labeled tasks in this run predominantly surfaced cannot find symbol
/ incompatible types where the required change was a rename or move in pro-
duction classes or method signatures. Because the pipeline intentionally restricts
edits to the test file (and at most minimal pom.xml tweaks) to protect internal va-
lidity, such cross-file refactorings are out of scope—mno sequence of test-local edits
can recover these builds. In two cases, the label itself was likely optimistic: the LLM
inferred Type-2 from superficial similarity, but later diagnostics indicated package
moves and method rebindings (closer to Type-3/4). This explains the apparent para-
dox of Type-2 < Type-3/4 in our results: the tool is effective for basic refactorings
inside the test, yet it cannot perform the cross-file changes that several Type-2 cases
actually demanded. A natural extension is to add a guarded, project-wide rename/-
move step derived from compiler errors, or to permit narrowly scoped production
edits under a separate attempt budget (cf. Outlook).

Time and "cost". Median wall time grew with the number of adaptation attempts
(6.58s at attempt 1, 72.42s at attempt 2, 163.81s at attempt 3). Among LLM
cases, the median time was 142.36s; failed LLM runs were slower (median 187.58s)
than successful ones. As a coarse proxy for cost, LLM responses were longer on
failures (mean length &~ 14,694) than on successes (=~ 7,700), suggesting that more
verbose outputs did not translate into better fixes in these runs. (Timings and
response lengths are taken verbatim from the metrics file; lengths are the recorded
response sizes.) In addition, I observed an extreme outlier: the mcMMO fork pair ran
for 1,358.6s and still failed due to extensive architectural differences and missing
dependencies, indicating that severe structural divergence can dominate runtime
without yielding progress.

34 4 Evaluation

Average total runtime by attempt outcome n=8

350 4

300 A

250 A

200 4

150 A

100 A

Average execution time (seconds)

50 4

Success on attempt 1 Success on attempt 2 Success on attempt 3 Failed after 3 attempts
Outcome

Figure 4.1: Attempt-wise wall-clock time distribution.

4.6 Qualitative Cases (lllustrative)

To complement the quantitative results, I present short vignettes that show the
concrete edits the tool applied (or failed to apply). Each vignette reports: contezt,
failure signal, edit, outcome, and soundness.

Case A — Type-3, compilable but Unsound: geometry-api Context. Source
and target both provide WKB round-trip support; API drift caused signature/im-
port differences. Failure. Initial insertion failed with missing exceptions and a
method-identity mismatch in an assertion. Edit. The LLM added missing imports,
widened the throws clause, and replaced Equals with Java’s equals. Outcome.
Compiled on attempt 3. In the spot-check this was Unsound: the changed oracle
weakened the equality check for one path.

Listing 4.1: geometry-api: focused diff for TestWKBSupport. java

1 diff ../../testcases/davidraleigh_geometry-api-java_TestWKBSupport.java
src/test/java/com/esri/core/geometry/TestWKBSupport . java

©e

+ import org.codehaus. jackson.JsonParseException; // added

©o

- public void testWKB() {

6 + public void testWKB() throws JsonParseException, IOException { //

widened throws

= W~

ot

7 QO

4.6 Qualitative Cases (Illustrative) 35

assertTrue(geometry.Equals (geomFromBinary)) ;
// 0GCGeometry exposes 'equals', not 'Equals'
assertTrue (geometry.equals (geomFromBinary)) ;
No newline at end of file

3]
|

—=
-~ + +

Case B — Direct success (no LLM): remoting Context. Same project fam-
ily; the copied test remained applicable. Failure. None; built in ~ 9-10s. Edit.
No changes. Outcome/Soundness. Sound by inspection (identical scenario/ora-
cle).

Case C — Type-3, Sound: LightCouch Context. Assertion style and JSON util-
ity drifted (Hamcrest — JUnit assertions; JSON codec update). Failure. cannot
find symbol on assertThat(..., is(...)) and outdated JSON helper. Edit.
Assertion rewrites and import updates; swapped JSON helper to target’s API. Out-
come/Soundness. Success on attempt 2; Sound (same inputs/oracles).

Listing 4.2: LightCouch: assertion+API drift handled

1 diff ../../testcases/jjrodrig_LightCouch_ViewsTest.java src/test/java/org
/lightcouch/tests/ViewsTest. java

2 00

3 —package org.lightcouch.tests;

PR

5 =// import static org.hamcrest.CoreMatchers.is;

6 =// import static org.hamcrest.CoreMatchers.not;

7 =// import static org.hamcrest.MatcherAssert.assertThat;

s +package org.lightcouch.tests;

o +

1o +import static org.junit.Assert.assertEquals;

11 +import static org.junit.Assert.assertFalse;

o +import static org.junit.Assert.assertTrue;

i Q0

15 -public class ViewsTest extends CouchDbTestBase {
16 +// Removed 'extends CouchDbTestBase'

17 +public class ViewsTest {

1o + private static CouchDbClient dbClient;
20 + private static com.google.gson.Gson gson;

2» 00

23 - @BeforeClass

24 - public static void setUpClass() {
dbClient = new CouchDbClient();
dbClient.syncDesignDocsWithDb() ;
27— init();

¥
o
|

)
|

wt

e

S|

36

4 FEvaluation

}

@BeforeClass

public static void setUpClass() {

dbClient = new CouchDbClient();
dbClient.syncDesignDocsWithDb() ;

gson = dbClient.getGson(); // obtain Gson for JSON keys
init();

¥

O@org.junit.AfterClass

public static void tearDownClass() {

if (dbClient != null) dbClient.shutdown();
¥

+ o4+ 4+ A+ A+ A+ A+ A+ A+ A+ +

@0 // assertion style changes (Hamcrest -> JUnit)
-assertThat (foos.size(), is(1));
+assertEquals(l, foos.size());

-assertThat (allDocs.size(), not(0));
+assertTrue(allDocs.size() '= 0);

@0 // complex keys: List<int[]> -> List<String> (JSON)
-List<int[]> keysToGet = new Vector<int[]>();
-keysToGet.add(new int[] { 2011, 10, 15 });
-keysToGet.add(new int[] { 2013, 12, 17 });
-ViewResult<Integer[], Integer, Foo> fooRows = dbClient.view("example/
by_date")
- .keys(keysToGet)
+java.util.List<String> jsonKeysToGet = new java.util.Vector<>();
+jsonKeysToGet.add(gson.toJson(new int[] { 2011, 10, 15 }));
+jsonKeysToGet.add(gson.toJson(new int[] { 2013, 12, 17 }));
+ViewResult<Integer[], Integer, Foo> fooRows = dbClient.view("example/
by_date")
+ .keys(jsonKeysToGet)
.group (true)
.queryView(Integer[].class, Integer.class, Foo.class);
-assertThat (fooRows.getRows () .size (), is(2));
+assertEquals(2, fooRows.getRows().size());

Case D — Type-4, Sound: shiro-redis Context. DAO/storage layer refactored;
focal calls moved and were renamed. Failure. Missing method and moved type.
Edit. Updated import, replaced delete() with remove (), adjusted mock wiring.
Outcome/Soundness. Success on attempt 2; Sound (same scenario and oracle,
different APT surface).

Listing 4.3: shiro-redis: moved types + JUnit 5—4 + expire source change

4.6 Qualitative Cases (Illustrative)

diff ../../testcases/yiyingcanfeng_shiro-redis_RedisSessionDAQTest

src/test/java/org/crazycake/shiro/RedisSessionDAOTest. java
@@
-import org.crazycake.shiro.exception.SerializationException;
-import org.crazycake.shiro.serializer.ObjectSerializer;
-import org.crazycake.shiro.serializer.StringSerializer;
—import org.junit.jupiter.api.BeforeEach;
-import org.junit.jupiter.api.Test;
+// package layout changed in target:
+import org.crazycake.shiro.SerializationException;
+import org.crazycake.shiro.ObjectSerializer;
+import org.crazycake.shiro.StringSerializer;
+// use JUnit 4 in target:
+import org.junit.Before;
+import org.junit.Test;
@
- private IRedisManager redisManager;
+ // target uses concrete class instead of interface
+ private RedisManager redisManager;
@@
- ©BeforeEach
+ @Before
@@
- redisManager = mock(IRedisManager.class);
+ redisManager = mock(RedisManager.class);
@@
- redisSessionDAQ.setExpire(expire);
// target reads expire from redisManager; mock it
when(redisManager.getExpire()) .thenReturn(expire);
} else {
// preserve default-case oracle from original test
when (redisManager.getExpire()) .thenReturn(2);
b

+ o+ o+ o+ o+

.java

37

Case E — Type-4, compilable but Unsound: obd-java-api

Context. Exception

taxonomy changed across forks. Failure. Compilation succeeded after adapting the
expected exception, but semantics diverged. Edit. Changed the expected excep-
tion class. Outcome/Soundness. Attempt 3 yielded a compilable test marked
Unsound in the spot-check.

Listing 4.4: obd-java-api: TestNG—JUnit4, command shim, and exception drift

diff ../../testcases/pires_obd-java-api_UnsupportedCommandExceptionTest.

java src/test/java/com/github/pires/obd/exceptions/
UnsupportedCommandExceptionTest. java
@@
—-import com.github.pires.obd.commands.SpeedCommand;
-import org.testng.annotations.BeforeMethod;

38

9

4 FEvaluation

-import org.testng.annotations.Test;

+import org.junit.Before;

+import org.junit.Test;

+import pt.lighthouselabs.obd.commands.0bdCommand; // use generic command
in target

+import pt.lighthouselabs.obd.exceptions.MisunderstoodCommandException;

@@

- private SpeedCommand command;

+ private ObdCommand command; // API change: use ObdCommand

@@

- ©BeforeMethod

+ @Before

¢

- command = new SpeedCommand() ;

// Anonymous ObdCommand: exception occurs before calculations

command = new ObdCommand("0100") {

@0verride protected void performCalculations() {}

@0verride public String getFormattedResult() { return "Dummy Result"; }

@0verride public String getName() { return "Dummy Test Command"; }

};

+ o+ + + + o+

©aQ

- QTest (expectedExceptions = UnsupportedCommandException.class)
+ Q@Test(expected = MisunderstoodCommandException.class)

@@

- QTest (expectedExceptions = UnsupportedCommandException.class)
+ Q@Test (expected = MisunderstoodCommandException.class)

Case F — Failure / runtime outlier: mcMMO Context. Extensive archi-
tectural divergence and unresolved deps. Failure. Repeated symbol-resolution
and dependency errors; no convergent edit sequence. Edit. Multiple suggested
patches; none addressed root cause. Outcome. All 3 attempts failed; runtime

1358.6s. Demonstrates limits when surface similarity hides incompatible con-

texts.

4,

7 Threats to Validity

Validity of Measurement Instruments [distinguish instrument validity from method
validity. For clone-type labels produced by the LLM, face validity is reasonable but
subjective; content validity is incomplete because I did not enforce a checklist for
the accepted taxonomy; criterion validity is limited since I did not compare against
an external detector; and construct validity is threatened by the abstract nature of
“clone type,” so per-type results should be interpreted cautiously. For the main out-
come, “success = compilable,” face validity is acceptable but the measure does not
cover test intent or runtime behavior, and I only performed limited spot checks; thus

4.7 Threats to Validity 39

it is an incomplete proxy. Wall-clock time faithfully measures runtime cost, whereas
response length is only a coarse API-cost proxy.

Construct Validity (Research Method) My operationalization of success as “com-
pilable” addresses build correctness but does not ensure intent preservation. This
threatens construct validity because some compilable adaptations may be unsound. I
mitigated this by reporting the limitation explicitly and by performing spot checks.

Threats related to the soundness assessment. Judgments are manual and time-
bounded; I mitigated bias by using a fixed checklist (scenario, focal calls, oracle)
and recording one-line justifications with each verdict. The sample is small (n=7),
yielding wide intervals. When APIs differed, I compared relations (e.g., round-trip
parsing, exception class families) rather than exact strings. Tests without explicit
oracles were flagged as vacuous, which can under- or over-estimate soundness de-
pending on indirect effects.

Internal Validity I controlled alternative explanations through fixed environments
(JDK, Maven), a single LLM configuration, capped attempts, and recorded parame-
ters, which strengthens causal interpretation of differences between direct-copy and
LLM-guided attempts. Residual threats include selection effects (tasks requiring
LLM may be harder), stochastic LLM variability, and instrumentation effects from
prompt engineering; I report attempt-indexed outcomes and fix seeds where possible
to make such influences visible.

External Validity All experiments used Java/Maven projects and one LLM; Gradle
support exists in code but was disabled and not evaluated. Consequently, general-
ization to Gradle, other build systems or languages, and other LLMs is limited. This
reflects an explicit trade-off favoring tighter control (internal validity) over breadth
of generalization.

Statistical Conclusion Validity Given modest samples, I use 95% Wilson intervals
for proportions and focus on descriptive analysis without null-hypothesis significance
tests. This choice is appropriate for the data but yields wider intervals; larger
samples would narrow the uncertainty.

Reliability and Reproducibility LLM outputs are stochastic, and a rerun recovered
one prior failure, indicating test-retest variability.

40

4.8

4 FEvaluation

Summary of Findings

Feasibility. The automated pipeline achieved 69.2% compilable adaptations
across 26 tasks; the LLM loop contributed 7 additional successes beyond a
direct-copy baseline (426.9 pp).

Where it helps. The LLM repaired nearly half of the initially failing inser-
tions (46.7%); it was particularly effective on Type-3 divergences (62.5%
success) and solved two Type-4 cases in the main run.

Where it struggles. I observed 0/5 success on Type-2-labeled cases in this
run; the meMMO outlier (1,358.6s) shows that severe structural divergence can
consume substantial time without convergence.

Cost. LLM-guided attempts are slower (median ~142s) than direct successes
(6.6s), and longer LLM outputs were not predictive of success.

Soundness. In a manual spot-check of 7 LLM-affected successes, 3/7 were
Sound and 2/7 Probably-sound; 2/7 were Unsound (Tab. 4.2), underscoring
that compilability upper-bounds intent preservation.

Run-to-run variance. One previously failing pair (gelfj — gelfj-alt)
succeeded on rerun (Type-4, attempt 2, 57.6s, intent preserved), suggesting
that limited retries may increase yield.

Outlook. The results fulfill the core objective of demonstrating the feasibility of
LLM-assisted test-case adaptation in fork ecosystems (Chapter 1). Two immediate
next steps emerge from the data: (i) integrate test execution and lightweight ora-
cles to assess soundness (beyond compilability), as envisioned in the proposal, and
(ii) refine prompting/repair strategies for the persistent Type-2 failures (e.g., add
project-wide search for alternative focal methods, or include build-file and depen-
dency context when symbol resolution errors point outside the UUT). In addition,
(iii) incorporate controlled reruns or ensemble prompting to mitigate stochastic fail-
ures evidenced by the recovered gelfj-alt case.

5 Discussion

5.1 Synthesis and Implications

The study indicates that LLM guidance can materially improve automated test-
case adaptation across forked Java projects. Qualitatively, the compiler-aware loop
proved most effective on near-miss refactorings and structurally coherent edits, while
some ostensibly simple Type-2 differences remained stubborn. I observed stochas-
tic variance across reruns and sensitivity to outliers (e.g., very large or atypical
projects). For the exact figures and confidence intervals, see Chapter 4.

5.1.1 Interpreting the Soundness Findings

The spot-check suggests that structural adaptations (e.g., JUnit 44+5, imports, mi-
nor API shims) generally preserve test intent, while semantic shifts (notably changes
to exception types or equality semantics) are the main failure modes. I also observed
scope reduction: when target APIs lacked advanced features present in the source, I
removed those checks but retained core behavior validations, leading to “Probably-
sound” rather than “Sound.” Finally, a small number of tests were weak or vacuous
(e.g., conversion pipelines without substantive assertions), reinforcing that Compil-
able only upper-bounds Sound.

5.2 Contributions

I provide an automated adaptation pipeline: a complete, reusable workflow
that combines pre-build validation, structured test insertion, an error-driven LLM
repair loop, and persistent metrics for post-hoc analysis. The implementation is
Maven-first, with Gradle stubs present but not evaluated in this study. I introduce
compiler-aware prompting that fuses test code, UUT context, and parsed diagnostics
(e.g., missing symbols, imports, signature mismatches) to enable targeted, iterative
repairs rather than unconstrained generation. I contribute empirical evidence at fork
scale by evaluating 26 source-target pairs and showing that LLM assistance can raise
compilable adaptation rates beyond direct copy—paste, with the strongest gains on
Type-3 divergences and clear cost profiles across attempts. I release a metrics
schema and drivers, a structured logger, and dataset-processing scripts to run large

42 5 Discussion

batches, filter pairs, and summarize outcomes to enable reproducible analyses and
follow-up studies. Finally, I offer a problem characterization that highlights where
LLMs help (near-miss refactorings, renames/parameter edits) and where they strug-
gle (some apperantly simple Type-2 cases, severe structural divergence), along with
first evidence on non-determinism and outlier behavior.

5.3 Limitations

The primary limitation is the outcome metric (compilability): success was defined
as “builds compile,” and tests were not executed systematically. As observed in
one Type-4 case, a compilable adaptation may be unsound, so the reported rates
upper-bound true correctness. The sample size and taxonomy are constrained; with
26 tasks (15 LLM-triggered), several confidence intervals are wide, and clone-type
labels were LLM-derived approximations rather than ground-truth taxonomy. In
terms of ecosystem scope, subjects were Java/Maven/Gradle only; generalization
to other languages or build systems is untested, and all evaluated targets passed
pre-build, so automated build-file repair was not exercised. Stochasticity and re-
runs also matter: LLM outputs vary across runs, and a limited rerun recovered
one failure, indicating sensitivity to randomness and prompt dynamics. Cost mea-
surement relied on wall-clock time and response length as coarse proxies; actual
API cost and energy/runtime trade-offs were not modeled explicitly. The baseline
coverage used an intrinsic comparison (direct copy); prior work on recommenda-
tion or manual propagation was not re-executed here, limiting external comparative
claims. Finally, selection and timeouts influenced outcomes: a small number of hard
cases (e.g., mcMMO) dominated runtime, and the fixed cap of N=3 attempts may
under-explore difficult but solvable adaptations.

5.4 Future Work

Future work should move from compilability to soundness by integrating test exe-
cution, lightweight oracles, and differential or metamorphic checks to verify intent
preservation, and by reporting dual metrics (compilability & soundness) with con-
fidence intervals. Richer context and retrieval is promising: prompts can be aug-
mented with structured project context (symbol indices, call graphs, dependency
manifests) and extended to include build-file or dependency reasoning when er-
rors point outside the UUT. Addressing Type-2 failure modes calls for project-wide
search for renamed focal methods, import mapping, and AST-guided edits that
specifically target signature and package mismatches that defeated the LLM in this
run. Adaptive repair strategies could include multi-attempt curricula (coarse—fine
repairs), verifier-in-the-loop cycles (compile—execute—counterexample prompting),
and program-repair operators to complement LLM edits. Cost-aware orchestration

5.4 Future Work 43

is another direction: learn stopping policies and attempt budgets from telemetry,
prioritize fixes with highest expected utility per second/€, and preempt extreme out-
liers via early anomaly detection. Broader evaluation should consider larger, multi-
language corpora (Kotlin/Gradle, Python/PyTest, JavaScript/Jest), include broken
targets to evaluate build-file repair, and compare against (i) manual adaptation sam-
ples and (ii) non-LLM program-repair baselines. To improve robustness to random-
ness, add controlled reruns, prompt ensembles, and parameter sweeps, and report
stabilized estimates (e.g., majority vote over k attempts). A clone-aware analysis
using offline clone detectors or AST/PDG similarity could replace LLM heuristics
to obtain ground-truth labels and enable sharper per-type conclusions. Finally, ar-
tifact packaging should be hardened (config templates, seeds, containerized builds),
and an evaluation harness with scripts and a metrics schema should be released to
support independent replication and extension.

6 Conclusion

This thesis investigated whether Large Language Models (LLMs) can automate the
adaptation of unit tests across forked Java projects. Building on the engineering
workflow introduced in Chapters 2-3, and the empirical study in Chapter 4, I devel-
oped a compiler-aware adaptation loop that inserts candidate tests, diagnoses build
failures, and applies LLM-guided repairs.

Overall outcome. Among 26 adaptation tasks, the pipeline produced 18 compil-
able adaptations (69.2%). Relative to a direct copy—paste baseline (11/26, 42.3%),
the LLM loop added +7 further successes (4+26.9 percentage points, ~63.6% rel-
ative improvement). When invoked (15 tasks), the LLM repaired 7 cases (46.7%)
within at most three attempts. Runtime costs rose with each additional attempt
(median ~6.6s — 72.4s — 163.8s). A sensitivity check excluding the mecMMO
outlier yielded 18/25 successes (72.0%) with lower average runtime. Beyond im-
proving compilability, the manual spot-check found that 3/7 LLM-assisted successes
were strictly Sound and 5/7 were Sound or Probably-sound, highlighting both the
promise of error-driven adaptation and the need for guards against semantic drift
(especially for exception semantics and equality checks).

Answers to the research questions.

« RQ1 (diagnosis & initial fixes): The LLM frequently localized and repaired
straightforward incompatibilities after a failed insertion, achieving 46.7% suc-
cess among LLM-triggered cases, but not uniformly so.

e RQ2 (basic refactorings): The approach handled near-miss refactorings
(renames, signature changes) particularly well: LLM-labeled Type-3 cases
succeeded in 5/8 (62.5%).

« RQ3 (complex/semantic changes): Two Type-4 cases compiled (2/2),
indicating capacity for non-local edits; however, a spot-check uncovered one
compilable but unsound adaptation, underscoring that compilability does not
guarantee intent preservation.

 RQ4 (baseline comparison): Against the intrinsic baseline of direct appli-
cability, the LLM loop delivered a substantial absolute gain of +26.9 percent-
age points, quantifying its added value for post-selection adaptation.

Implications. For practitioners, LLM assistance can raise the yield of test reuse
across forks, especially for near-miss (Type-3) divergences, but incurs nontrivial
runtime and requires downstream validation to ensure soundness. For researchers,
the results encourage verifier-in-the-loop designs and cost-aware orchestration; con-
crete directions are discussed in Sections 5.3-5.4.

Limitations and outlook. This work measured compilability rather than soundness
at scale, employed LLM-derived clone-type labels, and focused on Java/Maven with
Gradle stubs not evaluated. A clear path forward is to integrate execution-based or-
acles, enrich prompts with project-wide context, and broaden subjects and baselines;
detailed proposals appear in Sections 5.3-5.4.

Closing remark. Within these boundaries, the thesis establishes a feasible and ef-
fective path toward automated test-case adaptation in fork ecosystems: LLM guid-
ance can meaningfully increase compilable reuse beyond naive copy—paste, while
highlighting a clear roadmap to soundness-aware, cost-efficient, and more general
solutions.

List of Figures

3.1 High-level architecture and data flow. .

4.1 Attempt-wise wall-clock time distribution

List of Tables

2.1

4.1
4.2

4.3

Experimental parameters and defaults. 5
Overall outcomes across 26 adaptation tasks. 29
Manual soundness spot-check on LLM-affected successes. Detailed

worksheets appear in Appendix .1. L. 30

Rerun outcomes across 25 tasks (mcMMO excluded). 31

Bibliography

1]

I. Bouzenia and M. Pradel. “You Name It, I Run It: An LLM Agent to Execute
Tests of Arbitrary Projects”. In: arXiv preprint (2024). arXiv: 2412.10133
[cs.SE].

C. Brindescu, M. Codoban, and C. Bird. “An empirical investigation into
merge conflicts and their effect on software quality”. In: Empirical Software
Engineering 25 (2020), pp. 3915-3951.

J. Dong, Y. Lou, H. Fu, P. Zhou, L. Zhang, and H. Mei. “MergeGen: A
Generative Model for Merge Conflict Resolution”. In: Proceedings of the 38th

IEEE/ACM International Conference on Automated Software Engineering (ASE).

2023.

A. Al-Kaswan, M. Ghafari, and O. Nierstrasz. “Reuse and maintenance prac-
tices among divergent forks in three software ecosystems”. In: Empirical Soft-
ware Engineering 27.54 (2022), p. 54.

Luca Kramer. IntelliJ IDEA Plugin for Test Case Recommendation for Inte-
gration in Forked Java Projects Hosted on GitHub. Bachelor’s thesis. Software
Engineering Faculty; Erstpriifer: Prof. Dr. Thorsten Berger; Zweitprifer: Jan
Sollmann, M. Sc. Bochum, Germany, Sept. 2024. URL: https://github.com/
isselab/TestCasePropagation.

S. Larsén. “Spork: Move-enabled structured merge for Java with GumTree and
3DM?”. Student thesis. KTH, School of Electrical Engineering and Computer
Science (EECS), 2020.

A. Mastropaolo, M. Ciniselli, L. Pascarella, and G. Bavota. “An empirical
study on the code refactoring capability of large language models”. In: arXiv
preprint (2024). arXiv: 2401.02320 [cs.SE].

M. Mukelabai, P. Borba, and T. Berger. “Semi-automated test-case propa-
gation in fork ecosystems”. In: 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
2021, pp. 16-20.

M. Mukelabai, C. Derks, J. Kriiger, and T. Berger. “To share, or not to share:
Exploring test-case reusability in fork ecosystems”. In: 2023 38th IEEE/ACM
International Conference on Automated Software Engineering(ASE). 2023.

S. Rahman, S. Kuhar, B. Cirisci, P. Garg, S. Wang, X. Ma, A. Deoras, and B.
Ray. “UTFix: Change Aware Unit Test Repairing using LLM”. In: Proceedings
of the ACM on Programming Languages 9.00PSLA1 (2025), Article 85.

https://arxiv.org/abs/2412.10133
https://arxiv.org/abs/2412.10133
https://github.com/isselab/TestCasePropagation
https://github.com/isselab/TestCasePropagation
https://arxiv.org/abs/2401.02320

[12]

[13]

[14]

[15]

Chanchal Kumar Roy and James R. Cordy. A Survey on Software Clone Detec-
tion Research. Tech. rep. 2007-541. Technical Report. School of Computing,
Queen’s University at Kingston, Sept. 2007. URL: https://research.cs.
queensu.ca/TechReports/Reports/2007-541.pdf.

A. Shirafuji, Y. Hoshikawa, Y. Watanobe, and K. Inoue. “Refactoring pro-
grams using large language models with few-shot examples”. In: arXiv preprint
(2023). arXiv: 2311.11690 [cs.SE].

A. Svyatkovskiy, Y. Zhao, C. Fu, N. Sundaresan, and S. Chandra. “Merge-
BERT: Program Merge Conflict Resolution via Neural Transformers”. In: Pro-
ceedings of the 29th ACM Joint Furopean Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE).
Also arXiv:2109.00084. 2021. arXiv: 2109.00084.

J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang. “Software testing
with large language models: Survey, landscape, and vision”. In: arXiv preprint
(2023). arXiv: 2307.07221 [cs.SE].

J. Zhang, M. Kaufman, T. Mytkowicz, R. Piskac, and S. Lahiri. “Can Pre-
trained Language Models be Used to Resolve Textual and Semantic Merge
Conflicts? (Experience Paper)”. In: Proceedings of the 29th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). 2021.

https://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf
https://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf
https://arxiv.org/abs/2311.11690
https://arxiv.org/abs/2109.00084
https://arxiv.org/abs/2307.07221

.1 Soundness Worksheets

Template per pair:

Project / Pair: <name>

Attempt index: 2 or 3

Scenario/Inputs (src—tgt): <one line>

Focal calls (src—tgt): <class.method list>

Oracle (src—tgt): <walue/exception/relation>

Key adaptations: <JUnit version, missing classes, mocks, etc.>
Verdict: Sound / Probably-sound / Unsound

Justification: <one line>

Filled examples (short):

IronMQ: Sound. Same CRUD/queue lifecycle scenarios and error handling;
framework /package adjustments only.

shiroredis: Sound. Same scenarios and oracles; API differences mocked.

JSQLParser: Probably-sound. Core parsing cases identical; removed ad-
vanced/absent features.

lightcouch: Sound. Same view/query semantics; assertion syntax changes
only; JSON encoding preserves meaning.

geometry-api: Unsound. equals vs. Equals semantics; one vacuous conver-
sion test.

javaewah: Probably-sound. Materialization differs, tested properties align.

obd-java-api: Unsound. Different exception types and class under test.

	Introduction
	Background and Motivation
	Problem Statement
	Goal and Objectives
	Novelty and Contributions
	Methodological Overview

	Methodology
	Parameters and Defaults
	Rationale for Parameter Choices
	Subjects and Selection Criteria
	Outcome Definitions
	Manual Soundness Assessment (Spot-Check)
	Handling Stochasticity
	Alignment with Research Questions

	Experimental Procedure
	Baseline and Analysis Plan

	Implementation
	System Architecture Overview
	Core Modules
	Environment Detection and Pre-Build Checks
	Test Case Insertion
	Iterative Build–Adaptation Loop
	Metrics Tracking

	Algorithms (Pseudocode)
	Design Details and Engineering Trade-offs
	Build Invocation and Guardrails
	Prompt Construction and Response Extraction
	Safety, Idempotence, and Cleanup

	Illustrative Code Excerpts
	Supporting Modules (Dataset Drivers)
	Dataset Processing and Filtering

	Operational Concerns
	Common Failure Modes and Mitigations

	Summary

	Evaluation
	Research Questions
	Experimental Setup
	Subjects and Procedure
	Environment
	Data Collected

	Overall Outcomes
	Soundness Spot-Check Results
	Sensitivity analysis: excluding mcMMO

	Results by Research Question
	Breakdown by Clone Type and Cost
	Qualitative Cases (Illustrative)
	Threats to Validity
	Summary of Findings

	Discussion
	Synthesis and Implications
	Interpreting the Soundness Findings

	Contributions
	Limitations
	Future Work

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Soundness Worksheets

