Language Server for Feature Annotations:
Integration with commonly used IDEs

Tim Schulz

Bachelor's Thesis — December 30, 2024

Chair of Software Engineering
Supervisor: Prof. Dr. Thorsten Berger

Advisor: Johan Martinson



Abstract

As a developer, you spend a lot of time searching for the location of features in code. This
task needs to be done in feature-oriented programming when maintaining code bases
or when customizing a software project. To reduce the time spent searching, feature
location techniques have been developed. The automatic approaches lack the robustness
needed for correct feature mapping. To address the challenge, domain-specific languages
were proposed to annotate the use of features in the code itself. To properly use the
annotations tool, support is required. Existing tool support is depending on single IDEs.
To broaden the available tool support, Taymour Kiwan and I designed a language server-
based implementation of HAnS to provide support for writing and navigating feature
annotations. While decoupling the functionality of HAnS from its IDE, we were limited
by the LSP, which makes it impossible to implement the same amount of functionality
the HAnS plug-in possesses while being IDE independent.



Contents

1 Introduction

1.1
1.2

Contribution . . . . . . ... L
Organization of this Thesis . . . . . . . . ... ... .. ... .. ...

2 Background, Motivation, and Related Work

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Feature . . . . . . .
Feature location . . . . . . .. .. ...
Tool support . . . . . . . e
JSON-RPC . . . . e e
Language Server Protocol . . . . . . . ... ... ... .. .. .. .. ...
LSP4J . . . e
ANTLR . . . . .
Motivation . . . . . . ..
Related work . . . . . . . . ..

3 Methodology

3.1 Researchdesign . . . . . . .. .. . . .
3.2 Tools and technologies used . . . . . . . . ... .. ... ..
3.3 Development of the language server . . . . . .. .. ... ... ... ...
3.4 Development of the Visual Studio extension . . . . .. ... ... ... ..
3.5 Testing and validation . . . . . . . ... . ... ... ... ... ..
4 Implementation
4.1 Structure of the language server . . . . . . . . . ... oL L.
4.2 Firstiteration . . . . . . . . ...
4.2.1 Code completion . . . . .. ... Lo oo
4.2.2 Hover . . . . . . . . e
4.3 Second iteration . . . . .. ..o
4.3.1 Gotodefinition. . . . . ... . ... ...
4.3.2 Gotoreference . . . . . . ...
5 Results
5.1 Development outcome . . . . . . .. .. L L
51.1 Correct parsing . . . . . . . . ..o
5.1.2 Code completion . . . . ... ... ..

5.1.3 Locating Featuresin Code . . . . . . . .. ... ... .. ......

10
10
11

13
13
15
15
17
17
17
18



Contents 1

5.2 Evaluation of the user study . . . . . . . .. ... ... .. ... .. 20
5.2.1 First iteration of the user study . . . . . . .. .. .. .. ... ... 20

5.2.2  Second iteration of the user study . . . .. .. ... ... ... .. 21

5.2.3 Conclusion of the user study . . .. ... ... ... .. .. ..., 23

5.24 Discussion . . . . . ..o 24

6 Conclusion 26
List of Figures 27
List of Tables 28
Bibliography 29
A Resources for user study 32
A1 Introduction . . . . . . . . . . 32
A1l Tasksforgroup 1. . . . . . . . . ... .. . 49

A12 Tasksforgroup 2. . ... . .. . ... 51

A2 Questionnaire . . . . . . . ... e 54



1 Introduction

The goal of software development is to create software that meets the expectations
of customers and users. To achieve this, software is carefully planned and designed.
A common practice is to design code in a way that it can be reused, often in the form
of libraries or frameworks [22]. When large companies create software, they often use a
process called “clone-and-own”, where a significant portion of the code is cloned from
a previous project and modified to fit the current one. This strategy is cost-effective
and requires less specialized knowledge compared to creating everything from scratch,
however it does not scale with the number of variants [9, 0].

In order to effectively manage and adapt these large and complex codebases, a project
is split into smaller independent parts, which share specific characteristics known as
features. They are used by software developers to describe specific functionalities of a
software project [18]. However, these features, spread across different locations of the
software project, often remain unrecognizable when looking solely at the codebase. This
creates a problem during maintenance, as updating or fixing bugs requires a software
engineer to be very familiar with the codebase. If the engineer does not know the code
well, they must spend time searching through documentation or the code itself, which
can be very time-consuming, especially in larger projects or when much of the code is
copied from another project [18]. Actually, feature location is one of the most time con-
suming often occurring problem [4, 26, 19, 21]. Automated techniques often fall short
in capturing nuances of software development, leading to imprecise annotations [20].
Therefore, Ji et al. (2015) suggest that developers should annotate code manually dur-
ing the development process, because the time spent writing the annotations reduces
the time to necessary find assets that belongs to a corresponding feature, which is also
known as feature mapping [10].

The significant problem with manual annotation is that developers often neglect to
document their code adequately [24], which leads to difficulties in maintenance, under-
standing and collaboration, especially in large projects. Therefore, developers require
tool support, that assists in annotating their code. One such tool is HAnS (Helping
Annotate Software), an IntelliJ IDE plugin, which aids developers in feature mapping.
It provides functionalities for recording feature locations, i.e. mapping features to code,
files and folders, browsing features, visualizing them, code completion and refactoring
annotations [13]. The grammar that HAnS uses for these annotations is based on the
work by Schwarz et al. , who formulated a syntax for embedded feature annotations [20],
which is either &begin/] and &end[] tags to surround code that corresponds to a specific



1 Introduction 3

feature, or &linef] tags for single lines. It’s important to remember that tags must be
as comments in the code, not to interfere with the actual code [13, 8].

While HAnS provides developers with tool support for recording embedded feature an-
notation in the IntelliJ IDE, we want to further encourage developers to record feature
locations during development by making HAnS IDE independent. This usage limitation
is significant for several reasons. First, it hinders the adoption of the plugin in diverse
development environments, thereby limiting its user base. Second, it stifles collaboration
in teams where members might prefer different development tools. Third, it restricts
the plugin’s potential for integration with emerging IDEs and text editors. Addressing
this problem is crucial as it enables broader dissemination and utilization of the plugin’s
features, promoting a more inclusive and efficient development ecosystem [1].

In this thesis, we engineer an implementation of the HAnS plugin as an language server.
Transitioning from a single-IDE dependency to a versatile language server framework
not only expands the usability of the plugin but also enhances the developer experience
across various IDEs and text editors. Therefore, it is necessary to decouple the plugin
from its native IDE. This will be done by using the existing plugin’s grammar as an in-
spiration to develop a robust LSP [13]. Additionally, one challenge that has already been
identified is that implementing the LSP might not be sufficient to solve all our problems,
as different IDEs handle LSPs differently. For example, using an LSP in Visual Studio
Code requires an extension to handle the communication. Another challenge is the need
to run our LSP concurrently with an existing language server, as our LSP won’t offer
language support on its own [11].



1 Introduction 4

1.1 Contribution

The purpose of this research is to reduce the time that is spend searching for specific
code, while maintaining, searching for code that belongs to a feature when using feature
oriented programming or merging code. The time spent only increases with the size of
the code base and its complexity. A lot of large and complex code bases can be found
in industry. To reduce the time spent searching, domain specific languages have been
proposed to mark code using manual annotations. Those annotations only help when
used correctly while writing or maintaining code. To help with this task the correct
tooling is necessary. Due to ever growing codebases and the lack of IDE independent
tooling we propose a solution to the problem.

Furthermore we bring tooling for feature oriented programming to more IDEs, thereby
improving the ability to manage features, while ensuring scale ability and adaptability
of code bases. With the development of the HAnS-LSP version we gain insight in how
the LSP work, how to implement an already existing extension as a language server
and what limitations does a language server have, that hinders implementation of ex-
tensions.

1.2 Organization of this Thesis

In this thesis I want to answer whether a language server is a good way to implement
functionalities of an extension to make them IDE-independent and furthermore I want
to ask if our implementation of an extension as a language server is well integrated and
if the usability of the server is not significantly worse than the extension, when using
the Language Server Protocol for the communication between the language server and
an IDE. The insights we derive can then be used to further improve our implementation
of the HAnS extension as an LSP or for developing other LSP-based extensions. First
we take a look at the background of feature location and tool support. Then I present
the language server we built and we are going over the result of a user study we did to
determine the usability of our implementation. Since in this thesis we take a look at two
iterations of the development of the language server the implementation and the test are
split into two parts each. in the end we conclude by taking a look at the results of our
user studies and our experience developing the server to determine if the sever is well
implemented and what can be improved. I will also try to answer the question: “Does
it make sense to use an LSP to implement features that an extension would normally
provide?”.



2 Background, Motivation, and Related
Work

To better understand the challenges and solutions in software development, it’s impor-
tant to explore the concepts of features, feature location existing tool support and Lan-
guage Server Protocol as they are the foundation of our development practice.

2.1 Feature

In software development a feature refers to a distinct functionality that delivers specific
value or capability to the user [25]. Features can be simple functions, like a “search” func-
tion, or complex systems, like “user authentication.” They represent high-level require-
ments that the software is expected to support, and are often used as a foundation for
planning, organizing, developing, and managing the codebase.

2.2 Feature location

As for feature location, it’s the process of identifying the specific parts of a software
system’s codebase that implement a particular feature. It involves tracing the function-
ality described at a high level down to the actual code responsible for that behavior [6].
Locating features is one of the most time consuming steps in maintaining or reusing a
software project [13].

2.3 Tool support

Tool support is the use of software tools to assist developers in various software devel-
opment tasks. These tools help with improving productivity, accuracy, and efficiency by
automating repetitive tasks[15]. There has been significant work in feature location and
annotation in software development. For example, Robillard and Murphy [18] discussed
the importance of tools that help developers understand and navigate large codebases.
Their work highlighted the challenges faced by developers when dealing with unfamiliar
code and the need for tools that provide better code comprehension support.



2 Background, Motivation, and Related Work 6

2.4 JSON-RPC

JSON-RPC is a remote procedure call (RPC) protocol, which uses the JavaScript object
Notation (JSON) format do deliver the calls [16]. A typical message sent using the
JSON-RPC protocol consists of:

1. version of the protocol
2. the method that is called
3. the parameters the method is called with

4. id of the message

2.5 Language Server Protocol

Language Server Protocol (LSP) makes HAnS IDE independent, the same way LSP has
been implemented for many language features such as auto completion and code naviga-
tion. These features had to be individually implemented for each IDE. A more effective
solution is to decouple these features from the IDE entirely. Therefore, Microsoft devel-
oped the Language Server Protocol (LSP), which defines a standard for communication
between a server that implements the features and the IDE using JSON-RPC [11]. The
integration of LSPs has revolutionized how development tools interact with coding lan-
guages, enabling a decoupled yet highly integrated development experience.
Additionally, more recent studies have focused on the use of LSP to decouple language-
specific features from IDEs. For instance, Amann et al. [1] demonstrated the benefits
of using LSP for providing consistent development experiences across different environ-
ments. Their research showed that LSP could effectively standardize feature implemen-
tation, reducing the need for redundant development efforts across multiple platforms.
However the LSP standard does not define how LSPs should be integrated in tools, this
is the reason why, for example some IDEs require an extension.

2.6 LSP4J

In our implementation of the language server, we are using the LSP4J framework.
It is an implementation of the LSP standard and the Debug Adapter Protocol for
Java by the Eclipse Foundation. The framework implements the types and the JSON-
RPC communication which are defined in the LSP[12]. It provides us with the basic



2 Background, Motivation, and Related Work 7

structure of a language server and interfaces for our implementation of language fea-
tures.

2.7 ANTLR

Most language server need a way to parse text documents or other files in order to work
with them. ANTLR generates Parser, Lexer and tree walkers from a single context-free
grammar [17].

2.8 Motivation

Despite these advances of having tool support, there has been limited research specifically
addressing the adaptation of feature mapping plugins, such as HAnS, as a language
server. This would make HAnS available to a broader range of developers and allow for
more research in feature mapping.

2.9 Related work

To track features in code, an assortment of possible solutions was proposed. The au-
tomatic location techniques are not usable in practice, since they are prone to errors.
Hence, research is looking for manual ways to trace features [10]. One way this may be
done is through code annotation using embedded feature annotations.

One tool to aid developers was presented by Martinson and Jansson et al. [13]. This tool,
named “HAnS”, maps features to code, visualizes the feature model and helps annotate
features by providing editing support. In their study, they concluded that the tool re-
duces the amount of annotation mistakes [13]. The used annotations is based on the
notation Schwarz et al. introduced, which consists of either &beginf], &lend[] or Eline[]
annotations for in code references and specific .feature-to-file and .feature-to-folder files
which map features to files or folders respectively [20]. The notation uses a .feature-model
where the names of the features and there structure is defined in a notation, which is
based on the Clafer modeling language [3]. However, the grammar, which defines feature
annotations, is based on FAXE, a lightweight feature annotation extraction tool. FAXE
proposed a set of ANTLR grammars to parse files to extract those annotations [20].
The HAnS tool, however, is exclusively available for the JetBrains IDE suite, which
reduces the number of developers that would benefit from such a tool. There have
been other tool implementations that help with feature location and related problems,
namely, FLORiDA, Feature Dashboard and FeatRacer, which are particularly valuable
in feature-oriented development [2, 7, 14]. Similarly to HAnS, these tools also suffer
from dependence on a single IDE.



3 Methodology

In this section we discuss the methodology used to implement the language server version
of the HAnS plugin and how we implemented features from HAnS using the Language
Server Protocol. in this chapter we also discuss the strategy used to determine the
usability of the language server. During the implantation it was my intention to achieve
two goal:

e RO 1: implement an LSP version of the HAnS IntelliJ plugin
e RO 2: verify the usability of the designed tool

The complete source code and everything regarding the user study can be found in our
GitHub'.

3.1 Research design

To reach and verify our research objectives we used an iterative engineering study ap-
proach similar to design science. In this thesis we look at the first two iterations of the
design process of the HAnS language server. Each iteration consists of 4 steps.

|::>[ 1. Planning >{ 2. Implementing }
[ 4. Evaluation |( 3. Testing }

Figure 3.1: Design process

https://github.com/isselab/HAnS-LSP


https://github.com/isselab/HAnS-LSP

3 Methodology 9

1. Planning: Planning the next part of the implementation, while also considering
the evaluation of the last iteration.

2. Implementation: Implementing the next part of the project.
3. Testing: Testing the implementation through unit-tests and an integration-test.

4. Evaluating: Evaluating the implementation, using the results of the previous test-
ing phase.

3.2 Tools and technologies used

JAVA: we used Java as the language to implement the language server, because the
other used tools support it as a programming language and is high abstraction makes it
easy to implement complex language features.

Git(Github): since the language server is developed in a a team, we are using a version
control tool to enable easy collaboration.

LSP4J: LSP4J provides us with the necessary interfaces and types to implement a lan-
guage server, and it handles the JSON-RPC based connection between the server and
an IDE, which makes it easier to focus on the language features we want to implement.

ANTLR: to reduce the errors, we could introduce when building our own parser, we
used ANTLR to build parser, lexer and tree walker.

Yo Code: Yo Code is an extension and customization generator provided by Microsoft.
It generates extension templates to help development of extension for VS Code and Vi-
sual Studio.

Maven: to use the language server we developed within an VS Code extension it is
necessary to build a Fat JAR to encompass all the required code to run and ship the
language server

System Usability Scale: The System Usability Scale (SUS) was used to measure how
well the tooling integrates into programming workflows. It is a way to measure the
Usability of a system. Usability is not some concrete value, since it is only perceived by
the user and depends on the context the system is used in [5]. The System Usability
Scale works by asking participants to rate how much they agree with 10 statements on
a scale from one to five, with one being strongly disagree and five being strongly agree.



3 Methodology 10

Using the answers to the questions, a score can be calculated. The score is in the range
of 0 to 100.

3.3 Development of the language server

The main part of the project consisted of implementing the most important features of
HAnS into an LSP server. The features of HAnS we implemented are:

e Parsing .feature-model, .feature-to-file and .feature-to-folder files
o Parsing files containing code and annotations

e Code completion for writing annotations

e Finding annotations in code

Since an LSP server has limited ways of interacting with an IDE compared with a plugin,
we had to think about how we could integrate the features. Our goal was to only use the
methods that are part of the LSP protocol to achieve the most IDE independence possible
during the course of this thesis. The LSP can be extended to have custom methods. The
extension of the LSP requires implementing methods on the server and the IDE side,
which would mean we would have to write an extension to almost every IDE. Writing
an extension specifically for every IDE is what we want to avoid by implementing HAnS
as a language server.

The implementation was done by using the frameworks and classes provided by LSP4J.
To manage dependencies and libraries required for implementing the LSP, we utilized
Maven as the build tool. Using Maven also allowed us to build the Fat JAR we require
for the extension and helps with reducing the complexity of manually handling resources.
The parsing of documents was handled through the use of parser and lexer generated by
ANTLR. The grammars used to generate the parser are based on the ones suggested by
FAXE.

3.4 Development of the Visual Studio extension

In order to test and use the language server we need a way to connect it with an IDE. We
chose to test the language server in VS Code since it is according to the Stack Overflow
Developer survey 2024 the most used IDE by developers [23]. To use an LSP, an extension
is needed, that’s why we implemented a simple VS Code extension, which launches a jar
of our Server using the Visual studio code API



3 Methodology 11

3.5 Testing and validation

To ensure that the entire system functions as expected, we chose a testing approach
consisting of autonomous unit tests and integration tests. This approach is based on
the the V-model. The V-Model is a software development process that extends the tra-
ditional waterfall model by showing the parallel execution of development and testing
phases, where each development stage corresponds to a specific testing phase, ensuring
systematic validation and verification throughout the life cycle [27]. We focused only on
system integration, integration-tests and unit-tests, since the acceptance test has been
already verified by the HAnS development team [13].

Requirements Acceptance Testing
\
Specifications System Testing
\
Architectual Design Integration Testing
Detail Design Unit Testing
Code

Figure 3.2: V-Model.

The verification of the code through unit test and the test strategy used is discussed in
the thesis written by Taymour Kiwan, who collaborated with me on the development of
the server. This thesis only focuses on the integration of the tool.

To test the integration and usability of the developed language server and the extension
used to launch it, a user study was designed by me. The user study conducted on
computer science students at our university. In the study the participants were split
into two groups. Both groups are given the same six tasks to complete and the same



3 Methodology 12

questionnaire to answer. The only difference between the groups is that the first group
uses the extension and the LSP for the first tree tasks while the second group uses
the extension for the second half. This design is called a cross-over study, which is
commonly used in research. The tasks consist of some simple annotation and code
browsing tasks in an existing project. The task and the project used are similar to
the one used in the HAnS study[13] and are already annotated to work with HAnS. The
questions we gave the participants consist of three parts. First, some general information
about the participant; second, some questions about whether they think that the tool
we provide helps with writing annotations and on whether they think it helps with
browsing code. The last part contains general questions about the integration of the
tool and the System Usability Scale, which we use to determine the usability of the
tool.



4 Implementation

In this chapter I will talk about our implementation of a Language Server and the
features we consider important for the efficient use of the feature annotation domain-
specific language used by HAnS.

4.1 Structure of the language server

To ensuring modularity and ease of extension, the HAnS-LSP server is following the
structure provided by the LSP4J framework. The Structure of the Language Server can
be seen in Figure 4.1.



4 Implementation 14

HAnSLSPLauncher HAnSLanguageServer

. f
+ main{)void +workspace : Workspace

+ textdocument : TextDocument

+ connect() : void

+ disconnect() : void

1 1

HAnSWorkspaceService HAnSTextDocumentService

+ Server . Server
+ Server . Server

+ didchangeWorkspace():

void + hover() - Hover
+ didchangeconfiguration(): + Symbol() - List=Symbols=>
void

+ didOpen():. void

+ didChange(): void

Figure 4.1: HAnS-LSP structure example

The entry point to launch the server is the HAnSLSPLauncher, which creates a new
instance of the server and ensures a proper startup. At the core of the server is the
HAnSLanguageServer, which implements the language server interface, defines the ca-
pabilities the Server provides and coordinates the communication between the other
components. Other services we implemented:

e HAnSTextDocumentService: Manages file related operations, such as hover infor-
mation, processing changes, symbol information and handles “got to” commands.

o HAnSWorkspaceService: Manages the workspace, including configuration changes,
workspace folders and workspace-related actions.

The server also includes four ANTLR grammars and the Lexer, Parser and Tree-walker
generated by ANTLR to parse feature models, feature-to-file, feature-to-folder and code
files. This is critical for providing the functionality of HAnS. Additionally it contains a
pom.xml file as part of the Maven configuration to manage dependencies and the build
processes.



4 Implementation 15

To support debugging we implemented a logging system. The logging system uses files,
since in the implementation of the language server already needs the Java stdout/stdin to
communicate with a client. All information about features are stored in a tree structure
which is constructed while parsing the feature model.

4.2 First iteration

During the first iteration, we focused on building a robust base implementation of an
LSP-base version of the HAnS plugin to simplify further expanding and development.
The first Feature we implemented after building a launchable prototype is the ability
to parse feature trees. The grammar used to generate the parser is similar to the one
proposed by FAXE, but since we wanted the ability to parse feature models, which
define or and xor relationships between features, we implemented correct parsing of
those. To find the corresponding feature model, we implemented a function to find the
correct .feature-model file by checking if the current folder has an .feature-model file.
if no .feature-model file can be found, it walks up the folder structure to its parent
folder and continues searching . It starts at the folder the currently opened file is in
and runs until it finds a .feature-model file or reaches the outmost folder opened in the
workspace.

4.2.1 Code completion

After implementing the ability to parse feature trees, implementing the code comple-
tion feature was possible. The user of the tool gets the names of the features and
the annotations recommended while writing code, which leads to faster annotation of
code.



4 Implementation 16

|_| &Begin[] Creating a new Begin Annotation

[]1&Begin[] ... //&End[]
[ 1&End[]

[1&Line[]

[1//&Begin[] ... //&End[]
[1//&End[]

[1//&Line[]

[ 1 GameState

Figure 4.2: Code completion example in VS Code

The tool can recommend different versions of the annotations to the user to make it
possible to quickly write code annotations. The user can choose to generate a éBegin/[/
annotation with an accompanying éFEnd/] annotation or without one. The user can also
choose between different versions with the comment delimiter or without.

Furthermore the recommendations include the names of features which are present in
the feature model that belongs to the corresponding file. Names for features that are
used multiple times in the model only get recommended with the corresponding parent
feature name in the front.

For example, if the feature “Snake” is defined twice in a feature model and the feature
“Snake_game” is the parent of the first occurrence of the feature “Snake” and the feature
“Tile” is the parents of the second occurrence of the features “Snake”, the tool only rec-
ommends “Snake game::Snake” and “Tile::Snake” as seen in Figure 4.3.

e_Game a feature defined in the model

e Game: :Snake

Figure 4.3: Code completion example duplicated feature names

As shown in Figure 4.2, where you can see the code completion window of VS Code
with the the recommendations for annotations marked in red and recommendations



4 Implementation 17

for feature names marked in green. the recommendation process in handles by the
IDE. The server provides the IDE only with all completion items that can be recom-
mended.

4.2.2 Hover

To provide the user with more information, the tool provides hover windows when the
user hovers over features and annotations with his mouse cursor. When hovering over
annotations, the hover window describes what the used annotation means, and when
hovering over features, it shows information about the feature. It tells the user where a
feature is defined and what the parent-feature and child-features are. An example Hover
is shown in Figure 4.4.

Tail is a Feature defined in the feature-model
parrent: Snake

children:

Defined at c\Users\Tim\Documents\GitHub\HANS-LSP\Userstudy\easelab-datasetsnake-HAnSLSP\ feature-model

in line: 12

Figure 4.4: Hover over feature example

4.3 Second iteration

In the second iteration we focused on implementing the remaining features we mentioned
in section 3.3. First we implemented parsing of .feature-to-file files, .feature-to-folder
files and code files. The grammars used are once again based on the ones FAXE provides
but changed a bit to make working with the Parse Trees a bit easier. The server now
also provides the IDE with information about Symbols in the current document, which
is necessary for the implementation we chose to implement finding locations in code.
Without providing the correct symbol information it wouldn’t be possible to call the “go
to definition” and “go to reference” methods we want to use for the implementation of
a fast way to browse the used feature annotations.

4.3.1 Go to definition

When the user clicks the “go to definition” option after right clicking a feature, the IDE
opens the .feature-model file the feature is defined in, at the position where the feature

is defined.



4 Implementation 18

4.3.2 Go to reference

To simplify the location of feature annotations in code we decided to implement the
“go to reference” method. When the user calls the “Go to reference” method, the IDE
receives all locations of:

1. code annotations that reference the feature
2. the .feature-to-folder and .feature-to-file files, where the feature is used in

3. all files which are mapped through a feature to file mapping

_a_'l_

SquareToLightUp.... C\User

[Food]
~ SquareToLightUpjava src\logic
/ &line[Food]

» ThreadsControllerjava src\logic

Figure 4.5: VS Code reference example

VS Code handles multiple locations by displaying an extra window to the user with
locations listed on the right side and a small version of the file containing the loca-
tion.



5 Results

In this chapter we assess if we implemented all features of HAnS we deemed necessary
for an efficient use of feature annotations. Furthermore we evaluate if the extension
provides good tool support and if the LSP and the extension integrate well in to the
workflow of a programmer using Visual Studio Code. Since the integration tests where
only conducted with VS Code, it remains unclear how other IDEs handle the language
server.

5.1 Development outcome

When starting development of the language server we set out to implement the most
important features of the HAnS IntelliJ extension.

5.1.1 Correct parsing

Correct parsing is one of the most important parts of the system since all other functions
rely on the correctness of the parsing. While implementing the parsing, we used ANTLR
to help build the correct parser and lexer. The grammars used are largely identical to
the one suggested by FAXE, which where also the bases for the ones used in HAnS. The
parsing done by our server is correct for all tests run by us. The only issue with our
implementation is that, since it is an LSP, we can not directly access the changes on a
document that are stored in the memory of the IDE. It would be necessary to track all
changes in a separate version of the document that is stores on the server side. For this
reason the tool currently can only guarantee correct function of the server when the user
saves the document.

5.1.2 Code completion

Code completion is a major functionality of HAnS since we can only get programmers
to write annotations while coding when it doesn’t require a lot of effort and time. Un-
fortunately, The way HAnS helps annotate code is not possible to create using an LSP,
because of the limited refactoring options of an LSP, since the refactor method can only
refactor on one position at a time. The best thing we could do is provide code completion
for annotations and feature names.



5 Results 20

5.1.3 Locating Features in Code

To locate the use of a feature in code we use the “go to definition” and “go to reference”
methods of the LSP, which works to navigate to uses of the feature. It allows the user to
quickly jump to uses of the feature and it allows for easy location of features respectively.
The only downside of working with this approach is that when using the “go to reference”
method other LSPs which are working on the file at the same time provide references for
other things at the same time. For example: when JAVA code contains a method that
is annotated with a block annotation and the user calls the “go to reference” method
on the feature that is written in the éBegin/] brackets the JAVA LSP will provide the
IDE with locations where the method is used, which will be mixed with the ones our
language server provides, because this is how multiple parallel running LSP are handled
in VS Code.

5.2 Evaluation of the user study

Two rounds of the user study were run to determine how well the developed LSP inte-
grates into VS Code. The first run was conducted at the end of the first iteration.
In that iteration we focused on building a good base for the next one and wanted
to know if we can get qualitative feedback with the user study design we are us-
ing.

5.2.1 First iteration of the user study

The first round was conducted with three bachelor students, which had never used the
annotations before and all of them had at leased one year of experience with JAVA.
All of them agreed that it was easier and faster to write feature annotations, when using
the Tool. Regardless of if it is a mapping, in a .feature-to-folder or a .feature-to-file file,
or a direct annotation.

The result of the System Usability Scale result of the iteration is 82,5 out of 100,
witch means the integration of our language server into the VS Code workflow is quite
good.



5 Results 21

100 .

90 —r— T

80 ]

70 ]

60 ]

50 ]

40 1

System Usabilty Scale

30 ]

20 r T

10 - ]

0 |
lteration 1

Figure 5.1: System Usability Scale of the first iteration

Our server got the worst score in the the following questions: “I think that I would need
the support of a technical person to be able to use this system”, “I needed to learn a lot
of things before I could get going with this system” and

I felt very confident using the system. That could mean that our explanation is not
detailed enough or the information we provide to introduce the annotations and the tool
is not precise enough. A different problem seems to be that the set-up process is not
straight forward as it requires a bit of time and effort. Two participants explicitly stated
that setting up the tool is the greatest challenge they faced.

5.2.2 Second iteration of the user study

In the second round of the study we wanted as many participants as possible. In the end
seven students participated in the study. With the exception of one person, everyone
agreed that it was faster and easier to write feature annotations, when using the tool,
compared to without. The person who did not agree chose the neither agree nor disagree



5 Results 22

option. All participants had at least one year of experience using JAVA, but no one used
annotations before participating in the user study. The average System Usability Score
of the second round was 75,36.

100 |

90 T — :

80 .

70 | 7

60

50 | 7

40 1

System Usabilty Scale

30 .

20 T

10 .

0 |
lteration 2

Figure 5.2: System Usability Scale of the second iteration

The lowest score calculated during the second run is 52,5 and the highest is 90. A
score of more than 70 means it is still well integrated. The questions with the worst
scores are: “I think that I would need the support of a technical person to be able to
use this system”, “I found the system unnecessarily complex” and “I needed to learn a
lot of things before I could get going with this system”. The biggest problem with the
implementation seems to be with the knowledge the user needs to use the system, the
complexity of the setup process. The question about the biggest problems faced by the
participants confirm that.



5 Results 23

5.2.3 Conclusion of the user study

100 T T

90

80 T

70 7

60

50 ]

40 7

System Usabilty Scale

30 7

20 ]

0 | |
lteration 1 lteration 2

Figure 5.3: System Usability Scale comparison

When looking the results of both runs of the study, the results are pretty similar. The
difference of 7,2 in the average System Usability Score between both iteration can be ex-
plained by the low amount of participants in both runs of the user study.

‘ Iteration 1 Iteration 2

#Participants 3 7
#Participants Group 1 2 5
#Participants Group 2 1 2
Average SUS 82,5 75,36
Highest SUS 90 90
Lowest SUS 72,5 52,5

Table 5.1: Comparison of both iterations



5 Results 24

Furthermore, the System Usability Score is just a way to measure the usability of a
system, which is not a real value that can be measured. Usability is different for every
person and as such the System Usability Score con only give us an estimate. Since
the difference in the measured values does not significantly change and is above 75
in both cases, we can conclude that the tool is well integrated in the workflow of a
programmer that is using VS Code. No user reported any major issues with the way
we implemented the features or the way they interact with the tool. Which furthermore
point to the tool being implemented well enough. The biggest problems users faced
and the suggestions to further improve the implementation are consistent between both
runs.

5.2.4 Discussion

The implementation of the base functionality of HAnS into a language server was a
success. Because of how the functionalities of HAnS line up with commands the LSP
natively supports. But not all steps of the conversion were, without problems. The LSP
limits the interaction with the IDE and the information the IDE receives from other
sources or stores inside its memory, for example the changes stored in a temp file. The
use of the LSP also comes with limitations of what the server natively can support, for
example the LSP does not support all functionalities an extension provides. Further-
more, it is not possible to provide syntax highlighting in the LSP and integrating it
manually into the LSP would require to implement it in both an extension and on server
side, which is against what we are trying to achieve with the LSP, since someone would
still have to implement a plugin for every IDE. Another limitation of the implementation
of a language server is with the amount of refactoring that is possible with a language
server, since the Language Server Protocol does not allow for refactoring at different
places in the same document, let alone in different documents.

The results of the study only suggests that our implementation was a success, since the
number of participants is not high enough for a definitive answer. The System Usability
Score of more than 75 in both runs point to the conclusion, that the tool is well imple-
mented. The difference in the average System Usability Score between both iteration
is not significantly different and can be explained by the low number of participants in
both runs.

The tasks were chosen to test the features the toll provides and is therefor not an ideal
representation of the a work a developer would do and the example project given is rel-
atively small compared to real projects. Therefore, it needs to be tested if the study we
conducted translates to the real world. This thesis goal was to develop a IDE indepen-
dent version of HAnS using the LSP. But how a language server is implemented is not
defined by the LSP. during testing and development we only focused on VS Code. How
well the toll integrates into other IDEs need to be tested separately. The extension and



5 Results 25

the language server provide tool support for writing annotations and for browsing exist-
ing code basses. The biggest problem the tool seems to have is the amount of knowledge
a new user has to learn to use the tool and the annotations effectively and the long and
for such a tool complex set up process.

Future work could be optimise the existing server by using concurrency in the longer cal-
culations and function calls like the parsing of the code base or the searching in the tree.
The implementation of other features of HAnS could also be a possible follow up task.
Another task could be to try to optimise the integration of the extension and the plugin
by directly taking the feed back into account we gathered during the user study, which
suggest to implement syntax highlighting and highlighting features which are annotated
but not defined in the feature model. A different topic could be to check how much
effort it would take to get the language server working in different IDEs to determine
how IDE independent a Language Server really is or testing how much effort it takes to
support languages with other comment styles, since we are currently only supporting C
type comments and only tested with JAVA code.



6 Conclusion

To increase maintainability of code bases or the modularity of software systems, we
want developers to properly document their code. To help with the documentation,
feature-oriented Domain specific Languages were proposed, but for developers to take
advantage of the languages propose we need tool support. Until now, there was no IDE
independent tool support and developers, who use not supported IDEs had to change
their IDE or don’t use tooling designed for those languages.

HAnS-LSP aims to address the issue of IDE dependent tooling by trying to become IDE
independent. It is designed to only use the LSP to deliver the basic functionalities of
HAnS. The tool provides helpful functionalities like code completion, locating uses of
annotations in code and navigating to annotations. We provide an extension to Visual
Studio Code, which allows the use of the language server.

With this project we wanted to answer whether it is possible to implement the base
version of the HAnS plugin as a language server. We managed to implement all the fea-
tures deemed important, but not without problems, since the Language Server Protocol
is more restrictive than APIs used to develop Extensions. Only minimal communica-
tion between the server and the client is part of the base features of the LSP. Since the
features of HAnS line up with methods the LSP provides by default, we were able to
implement a working server. More complex or specific functionalities an extension could
implement are not possible with the basic methods the LSP natively provides. To verify
the usability of the design, a user study containing the System Usability Scale questions
was conducted. Even though the number of participants were quite low, the data points
toward it being well integrated into the development workflow.

To fully evaluate the usability and integration, a study with more participants should
be conducted.

The development of the tool assists with creating more tooling to help with feature-
oriented programming. Further, it creates a foundation for improving the tool sup-
port to increase the accessibility of tools and increases the efficiency of programmers.
Future research could revolve around on increasing the usability of the tool, address-
ing limitations of the LSP and broadening the support of IDEs and programming lan-
guages.



List of Figures

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Design process . . . . . ... 8
V-Model. . . . . . o 11
HAnS-LSP structure example . . . . . . .. . . ... ... ... ... 14
Code completion example in VS Code . . . . .. ... ... ... ..... 16
Code completion example duplicated feature names . . . . . . . . . .. .. 16
Hover over feature example . . . . . . .. .. ... ... L. 17
VS Code reference example . . . . . . .. ... ... .. 18
System Usability Scale of the first iteration . . . . . ... ... ... ... 21
System Usability Scale of the second iteration . . . . . . .. ... .. ... 22

System Usability Scale comparison . . . .. .. . ... ... ... ..... 23



List of Tables

5.1 Comparison of both iterations



Bibliography

1]

S. Amann et al. “A Study on the Usage of the Language Server Protocol in Open
Source IDEs/Editors”. In: Proceedings of the 27th IEEE International Conference
on Software Analysis, Fvolution and Reengineering. 2011.

Berima Andam, Andreas Burger, Thorsten Berger, and Michel R. V. Chaudron.
“FLOrIDA: Feature LOcatlon DAshboard for extracting and visualizing feature
traces”. In: VaMoS ’17. Eindhoven, Netherlands: Association for Computing Ma-
chinery, 2017, pp. 100-107. 1SBN: 9781450348119. DOI: 10.1145/3023956.3023967.
URL: https://doi.org/10.1145/3023956.3023967.

Sven Apel, Don Batory, Christian Kastner, and Gunter Saake. “Software Product
Lines”. In: Feature-oriented software product lines. 2013th ed. Berlin, Germany:
Springer, 2013, pp. 1-44.

Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wasowski. “Clafer: Unifying class and feature modeling”. In: Software & Systems
Modeling 15 (Dec. 2014). DOI: 10.1007/s10270-014-0441-1.

T.J. Biggerstaff, B.G. Mitbander, and D. Webster. “The concept assignment prob-
lem in program understanding”. In: [1993] Proceedings Working Conference on
Reverse Engineering. 1993, pp. 27-43.

John Brooke. “SUS: A quick and dirty usability scale”. In: Usability Fval. Ind. 189
(Nov. 1995).

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. “Feature
location in source code: a taxonomy and survey”. In: Journal of Software: Evolution
and Process 25 (2013). URL: https://api.semanticscholar . org/CorpusID:
7630279.

Sina Entekhabi, Anton Solback, Jan-Philipp Steghtfer, and Thorsten Berger. “Vi-
sualization of Feature Locations with the Tool FeatureDashboard”. In: Proceed-
ings of the 23rd International Systems and Software Product Line Conference -
Volume B. SPLC ’19. Paris, France: Association for Computing Machinery, 2019,
pp. 1-4. 1SBN: 9781450366687. DOI: 10 .1145/3307630 . 3342392. URL: https:
//doi.org/10.1145/3307630.3342392.

FAXE Online Appendiz. https : //bitbucket . org/easelab/faxe. Accessed:
2024-12-18. 2021.

J. Feichtinger, T. Kehrer, and D. Striiber. “SiLift: Lifting Clone-and-Own to Soft-
ware Product Lines”. In: Proceedings of the 33rd IEEE/ACM International Con-
ference on Automated Software Engineering. 2019.


https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1007/s10270-014-0441-1
https://api.semanticscholar.org/CorpusID:7630279
https://api.semanticscholar.org/CorpusID:7630279
https://doi.org/10.1145/3307630.3342392
https://doi.org/10.1145/3307630.3342392
https://doi.org/10.1145/3307630.3342392
https://bitbucket.org/easelab/faxe

[18]

[19]

21]

[22]

Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. “Main-
taining feature traceability with embedded annotations”. In: Proceedings of the
19th International Conference on Software Product Line. SPLC ’15. Nashville, Ten-
nessee: Association for Computing Machinery, 2015, pp. 61-70. 1sBN: 9781450336130.
DOI: 10.1145/2791060.2791107. URL: https://doi.org/10.1145/2791060.
2791107.

Language Server Protocol. https://microsoft.github.io/language-server-
protocol/. Accessed: 2024-12-18.

LSP4J. https://github.com/eclipse-1sp4j/1sp4j. Accessed: 2024-12-19.

J. Martinson and H. Janson. “HAnS: IDE-Based Editing Support for Embedded
Feature Annotations”. In: SPLC ’21: Proceedings of the 25th ACM International
Systems and Software Product Line Conference - Volume B. 2011.

Mukelabai Mukelabai, Kevin Hermann, Thorsten Berger, and Jan-Philipp Steghofer.
“FeatRacer: Locating Features Through Assisted Traceability”. In: IEEE Trans-
actions on Software Engineering 49.12 (2023), pp. 5060-5083.

G.C. Murphy, M. Kersten, and L. Findlater. “How are Java software developers
using the Eclipse IDE?” In: IEEE Software 23.4 (2006), pp. 76-83.

official JSON-RPC website. https://www.jsonrpc.org/. Accessed: 2024-12-19.

Terence Parr and Kathleen Fisher. “LL(*): the foundation of the ANTLR parser
generator”. In: PLDI "11. San Jose, California, USA: Association for Computing
Machinery, 2011, pp. 425-436. 1SBN: 9781450306638. URL: https://doi.org/10.
1145/1993498.1993548.

M. P. Robillard and G. C. Murphy. “Concern graphs: Finding and describing con-
cerns using structural program dependencies”. In: Proceedings of the 2/th Inter-
national Conference on Software Engineering. 2002.

Julia Rubin and Marsha Chechik. “A Survey of Feature Location Techniques”. In:
Domain Engineering: Product Lines, Languages, and Conceptual Models. Ed. by
Iris Reinhartz-Berger, Arnon Sturm, Tony Clark, Sholom Cohen, and Jorn Bettin.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 29-58. 1SBN: 978-3-642-
36654-3.

Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. “A Common Nota-
tion and Tool Support for Embedded Feature Annotations”. In: SPLC ’20. Mon-
treal, QC, Canada: Association for Computing Machinery, 2020, pp. 5-8. I1SBN:
9781450375702. por: 10.1145/3382026 . 3431253. URL: https://doi.org/10.
1145/3382026.3431253.

Yulia Shmerlin, Irit Hadar, Doron Kliger, and Hayim Makabee. “To Document or
Not to Document? An Exploratory Study on Developers’ Motivation to Document
Code”. In: vol. 215. June 2015, pp. 100-106. 1SBN: 978-3-319-19242-0. DOT: 10.
1007/978-3-319-19243-7_10.

Tan Sommerville. Software engineering. 9th. Pearson, 2011.


https://doi.org/10.1145/2791060.2791107
https://doi.org/10.1145/2791060.2791107
https://doi.org/10.1145/2791060.2791107
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://github.com/eclipse-lsp4j/lsp4j
https://www.jsonrpc.org/
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/3382026.3431253
https://doi.org/10.1145/3382026.3431253
https://doi.org/10.1145/3382026.3431253
https://doi.org/10.1007/978-3-319-19243-7_10
https://doi.org/10.1007/978-3-319-19243-7_10

Stack Overflow Survey 2024, integrated development environment. https://survey.
stackoverflow.co/2024/technology#l-integrated-development-environment.
Accessed: 2024-12-19.

Christoph Johann Stettina and Werner Heijstek. “Necessary and neglected? an
empirical study of internal documentation in agile software development teams”.
In: Proceedings of the 29th ACM International Conference on Design of Commu-
nication. SIGDOC ’11. Pisa, Italy: Association for Computing Machinery, 2011,
pp- 159-166. 1SBN: 9781450309363. DOI: 10.1145/2038476.2038509. URL: https:
//doi.org/10.1145/2038476.2038509.

C.R. Turner, A. Fuggetta, L. Lavazza, and A.L. Wolf. “Feature engineering [soft-
ware development|”. In: Proceedings Ninth International Workshop on Software
Specification and Design. 1998, pp. 162-164.

J. Wang, X. Peng, Z. Xing, and W. Zhao. “How Developers Perform Feature Lo-
cation Tasks: A Human-Centric and Process-Oriented Exploratory Study”. In:
Journal of Software: Fvolution and Process. Vol. 25. 11. 2013.

“WATEERFALLVs V-MODEL Vs AGILE: A COMPARATIVE STUDY ON SDLC”.
In: 2012. URL: https://api.semanticscholar.org/CorpusID:263064309.


https://survey.stackoverflow.co/2024/technology#1-integrated-development-environment
https://survey.stackoverflow.co/2024/technology#1-integrated-development-environment
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1145/2038476.2038509
https://api.semanticscholar.org/CorpusID:263064309

A Resources for user study

A.1 Introduction

Purpose:

The purpose of this repo is to test and evaluate the embedded feature annotations plugin
HAnS-LSP for Visual Studio Code. Do not download the repo content, you will be given
a different path to download everything you need

Requirements:

e Visual Studio code installed

e Required JDK 22+

o Installed HAnS-LSP-vscode plugin

e JAVA Home Set to JDK 22+

e Make sure you turn on auto-save in Visual studio code or save your changes after
every step for the extension to work correctly.

JAVA HOME SETTINGS
How to set JAVA__HOME on windows:

Search for ‘Edit the system environment variables’


https://github.com/isselab/HAnS-LSP/tree/test-with-plugin

changes.

nemg

7gs..

7gs..

7gs..

wriabl

1ex
it
lir

de
it
LW

»ehl

) system varia

[ @ Apps Documents Web

Best match

Edit the system environment

ra
I F variables

Control panel

system variables
See more search results

Search the web

system variables path - See more

i

search results

system variables environnement

system variables windows 11

system variables windows 10

system varia

system variables greyed out

system variables in sap abap

P L L L L £ L

system variables for your account

Settings

=

Folders

Phot B oF @@

B

Edit the system environment variables

Open

Cantral panel

click on ‘Environment Variables’

TERTTH T H THY

e TS



Systemn Properties

Computer Name Hardware Advanced System Protection Remate

You must be logged on as an Administrator to make most of these changes.

Peformance

Visual effects, processor scheduling, memony usage, and virtual memaory

User Profiles
Desktop settings related to your sign+n

Settings...
Startup and Recowvery
System startup, system failure, and debugging information
Settings
\[ Environment Yariables
QK Cancel Apphy

click ‘new...’ to create a new variable.



| Environment Variables >

User variables for Taymo

Variable Value

JAVA_HOME CAPROGRA~1'Java\jdk-23

Onelrive ChUsersh Taymo\Onelrive

Path ChUsers\ TaymotAppDatatLocal\Programs\Python\Python3 114 5cri...
TEMP ChUsers\ Taymo'AppDatatLocal\ Temp

TMP ChUsers\ Taymo' AppDatatLocal\ Temp

- é New... Edit... Delete

System variables

Variable Value

ComSpec CAWINDOWShsystem32hemd. exe

DriverData ChWindows\System 32\ Drivers'\DriverData

IGCCSVC DB ACQAAANCMndSBFDERjHoAWE/ Cl+sBAAAAN0OIbGFvEaA P CTKS...
MUMBER_OF PROCESS0RS 16

0s Windows_NT

Path ChProgram Files\Eclipse Adoptium’jdk-21.0.4.7-hotspotibin; C\Pro...
PATHEXT LCOM:.EXE:.BAT: CMD: VBS: VBE:.JS: JSE: WSF: WSH:. MSC

Mew... Edit... Delete

k|

Name the Variable ‘JAVA__HOME’ and add the path to your JDK 22+ as the value

Edit System Variable bt

Variable name: J8VA_HOME
Variable value: CA\Program Files\Java'jdk-23

Browse Directory... Browse File... Cancel

Installation of the HAnS-LSP plugin:

o Open Viusual studio Code -> Extensions (ctrl shift x) -> three points (Views and



more actions)”

File Edit Selection View Go Run

Terminal Help

Language Support for Java(TM) by Red Hat

Lin

Andromeda
them

Eliver Lara

Auto Rename Tag
nam red HT!

Jun Han

Code Runner

Restart Extensions

Restart Extensions

Quokka: What's New
Views >
Check for Extension Updates

Disable Auto Update for All Extensions

Enable All Exte:
Disable All Installed Extensions
Show Running Extensions

Start Extension Bisect

Install from VSIX...

e Choose the path to the VSIX file of the plugin after unzipping the downloaded

Userstudy.zip.

Visual Studio auto-save

-auto save would save tthe effort of pressing save after every change :)



] File Edit Selection View Go Run Term

Mew Text File Ctri+N
Mew File... Chrl+Alt+Windows+N
MNew Window Ctrl+Shift+N
Mew Window with Profile

Open File... Ctrl+0O
Open Folder... Cirl+K Cirl+0O
Open Workspace from Fle...

Open Recent

Add Folder to Workspace...

Save Workspace As...

Duplicate Workspace

Ctri+5

Ctri+5Shift+5

Preferences

Revert File

Close Editor Ctr+F4
Close Folder Ctri+K F
Close Window Al+F4

Bxit

alt tag

How to disable the extension

1. To temporarily disable the HAnS-LSP extension -> go to extensions -> search for
HAnS-LSP -> click the gear button at the right of an extension entry.



2. Click “Disable”.

@en EXten Enabled (Ctrl+Shift+X)

HANS-LSP-vscode-Extension w-e:

undefined_publisher

Excel Vi
- Extention for HAnS-LSP-LS

Extension Pack for Java

Disable [+  Uninstall Auto Update £

DETAILS

hans-Isp-vscode-extension README

This is the extention for the HANS Language Server

Features

the extension offers autocomplete for annotations and featurenames:
![completion](images/completion.png)

the extension provides information when hovering over annotations:

IHover](in /Hover.png)

Requirements

HAnS-LSP-vscode-Extension D27ims JAVA jdk 22+ JAVA_HOME must be set
Extention for HANS-LSP-LS

undefined_publisher EEE G Known Issues

3. Click “restart extensions”

HANS-LSP-vscode-Extension v-e:

undefined_publisher

Extention for HANS-LSP-LS

Restart Extensions  Enable |  Uninstall

The Snake

A simple snake game in java, forked from @hexadeciman, using Threads and Java Swing
to display the game.

How it looks:


https://github.com/hexadeciman/Snake

S o — I:I_I X

How it works:

The aim of the game is to make the snake grow as big as possible by moving across
the playing area and eating food. The snake is controlled with the arrow keys of your
keyboard. No walls are present in the game so when the snake crosses the edge of the
playing area it appears at the opposite side. Food is represented by blue squares that
increases the size of the snake by one square when eaten. After being eaten, the food
respawns at a random location not occupied by the snake. The game is finished only
when the snake collides with itself in any way.

The playing area is represented by a grid of tiles where each tile has a color that signals
what type of tile is located there. The background of the game is filled with white tiles
where the snake may move freely. The snake itself is made up of grey tiles that move



according to the directions given by the player. Food are blue tiles that have logic to
enlarge the snake by one and then respawn.

Background

As software projects keeps getting bigger and bigger developers often find navigating
the code to be a difficult task. Using features is a common way to talk about code and
the product, but it is often difficult to find the features in code. The use of embedded
feature annotations is a way to leave traces of where features are implemented. That’s
HAnS has been created for Intellij users. Our mission is to create a Language server
protocol to make HAnS IDE independent.

Definition of a feature

A feature is a characteristic or end-user-visible behaviour of a software sys-
tem. Features are used in product-line engineering to specify and commu-
nicate commonalities and differences of the products between stakeholders,
and to guide structure, reuse, and variation across all phases of the software
life cycle. - Apel, Batory, Késtner, and Saake (2013)

The analogy to the snake game is for example the feature Controls which is the collective
code and behaviour concerned with pressing the arrow keys.

Feature location

A large part of the work of a developer consists of finding the implementation of a feature
in code. This is necessary in order to extend, maintain and remove features, and it often
requires substantial effort. This activity is known as feature location. A definition of
feature location reads:

Feature location is the task of finding the source code in a system that im-
plements a feature. - Kriiger, Berger, et al. (2018)

Embedded Feature Annotations

The usage of feature annotations is to map sections of code to functionality of the
software. The intent is that this can help developers with feature location. The system
of annotations that the HAnS plugin uses is able to map features to any file type and
programming language (except languages that do not have support for comments). The
central part of this annotation system is a file with the extension .feature-model. This
is a feature hierarchy model, describing feature names, and their hierarchy in textual
form. These are all the features present in the system, and they may then be referenced
by mapping them to code by using the annotations described below. The feature model
is where you define a feature. The feature model below is contains all features present
in the Snake game.






Feature child

in this example Playing Area is a child of Snake_ Game

Snake Game

Playing Area

Feature Reference Names

Inside the feature hierarchy model, features with the same name may appear twice
or more often. To reference features uniquely the individual feature is pre-extended
with its ancestor until the combined feature reference is unique (separated by “:”).
This technique is called Least-Partially-Qualified name, short LPQ. The feature Snake
is mentioned twice above and must therefore be referenced uniquely in the manner
below.

Feature-to-code mapping

The feature-to-code mapping serves to link specific blocks and lines of code to one or
more features. The parts of the source code which are mapped to a certain feature are
called annotation scopes. An annotation scope is surrounded by annotation markers and
contains at least one feature reference. In the example below the feature Move is mapped
to the block encapsulated by the &begin and &end statements. The feature Collision
is mapped to the single line where it lies.




Feature-to-file mapping

The feature-to-file mapping is a specialized file with the extension .feature-to-file
and is used to map one or more file(s) and its/their content to one or more features. All
content of the linked file is considered fully to be part of the given feature references.
The mapping file must be stored in the same folder as the source code files and covers
only the file in this folder. In the example below each feature is mapped to the file
listed above. Additional mappings can be added beneath existing mappings in the
file.

Feature-to-folder mapping

The purpose of this file is to map complete folders and their content to one or more fea-
ture references. The mapping of feature references to folders allows linking specific fea-
tures to the folder, including all its sub-folders and files. With this, the mapping of com-
plete folder structures to features is possible and may substitute the feature-to-file map-
ping. The mapping file is located on the top level inside the to be annotated folder. Let’s
say, for example, that a feature relates to all code in a folder, then it could be mapped
by writing the feature name in a file with the extension .feature-to-folder as below.
Features must be separated by either spaces or new lines.

HAnS-LSP: Helping Annotate Software

The purpose of HAnS is to enable recording and editing support for feature annota-
tions.

HARNS-LSP supports: For the parsing to work properly, make sure to save your files
after changes.

o Embedded Feature Annotations (check .feature-model to browse all defined fea-
tures)



o Annotation Completion (ctrl space to get suggested completion)

oub B &Beginl ] Creating a new Begin Annotation
[ E &Begin[] ... //&End[]
N | 3 &End[]
=l &Line[ |
El //&Begin[] ... //&End[]
B //&End[]
pub E //&Line[ ]

o Hover over annotation (either hover over the feature name, or over the annotation
marker, e.g. begin, end or line). hovering will give information about that feature.
please note: hovering is keeping the mouse on the word, no clicks needed

feature is a Feature defined in the feature-model

Defined at: c:\Users\Taymo\OneDrive\Desktop\RUB\B.A\user case study 1\easelab-datasetsnake-HAnSLSP\easelab-datasetsnake-

HARSLSP\.feature-model

o feature name suggestion (ctrl space to get suggested name)

E Move a feature defined in the model

public static int getWindowWidth()

the “Move” feature is already defined in the .feature-model file



paselab-datasetsnake-HANSLSP » [Y .feature-mode

Snake Game

Playing Area
Tile
Food
Spawn
Blank
Snake
Update

Snake
Move
Collision
Position
Tail
Controls
GameS5tate
DataTypes
feature

o Definition: while in a code file (e.g. Window.java), right click on the feature’s name
written between [...] -> Go to -> definition. this will show you where the feature
has been defined (IMPORTANT: Calling Definition when in the “feature-model”
file results in VS Code calling the reference method instead)



el{C.git(col

ireToLightUp
Fet(c.ordinal

Go to Definition

Go to Declaration

Go to Type Definition

Go to Implementations Ctri+F12
Go to References Shift+F12
Go to Super Implementation

Pesk

Find All References Shift+Alt+F12
Find All Implementations
Show Call Hierarchy Shift+Ak+H

Show Type Hierarchy

Rename Symbol F2
Change All Occurrences Ctri+F2
Format Document Shift+Alt+F
Format Document With...

Refactor... Ctrl+Shift+R

Source Achon...

Cut Ctrl+X
Copy Ctri+C
Paste Chrl+V

Run Java

Debug Java

Command Palette... Ctrl+Shift+P




e Reference: while in .feature-model file, right click on the feature name -> GO to
-> reference. The user will then see where this feature has been annotated in the
all files that belongs to the feature model.



areToLightUp
ret({c.ordina

Go to Definition

Go to Declaration

Go to Type Definition

Go to Implementations Cirl+F12
Go to References Shift+F12
Go to Super Implementation

Peek

Find All References Shift+Alt+F12
Find All Implementations
Show Call Hierarchy Shift+Alt+H

Show Type Hierarchy

Rename Symbol F2
Change All Occurrences Cirl+F2
Format Document Shift+Alt+F
Format Document With...

Refactor... Ctri+Shift+R

Source Action...

Cut

Copy

Paste

Run Java

Debug Java

Command Palette... Ctrl+shift+P




Study Group

e Group 1
e Group 2

A.1.1 Tasks for group 1

Tasks to complete

During the task, take notes while coding, so you can answer the questionnaire after com-
pleting all the tasks. Make sure you turn on auto-save in Visual studio code or save your
changes after every step for the extension to work correctly.

First part: Annotating with HAnS-LSP
Warmup task

Add a .feature-to-folder file in the graphics folder. * Verify that the feature Playing Area
is defined in the .feature-model file. * Map the feature Playing Area to the new .feature-
to-folder file by writing it into that file. * To know how to map a feature to a folder you
can check again in the readme file *

You have now mapped the feature Playing Area to the graphics directory.
Task 1:

Implement a method ‘changeGrowth(int x){...}’ that changes the size, the snake grows
by and annotate it as feature (choose a fitting name). * Hint 1: the growth depends on
the growth variable * The method should be added to /src/logic/ThreadsController.java
file. The feature should be defined as a child feature of Snake in the Feature Model.

Reminder: Make sure you annotate the code you write!
Task 2:

Add a .feature-to-file file in the pojo folder. * Verify that the feature “Tile” is defined in
the .feature-model file. * Map the feature “Tile” to the file Tuple.java. * To know how to
map a feature to a file you can check again in the readme file *

Task 3:

Add a new feature (Choose any name) to the .feature-model file, then annotate both func-
tions, namely getWindowWidth() and getWindowHeight(), in a single block ( //&Be-
gin[you feature’s name] ... both functions logic. . ..//&End[you feature’s name] ). These
functions can be found in the /src/graphics/Window.java file. * To know how to anno-
tate a block of code you can check again in the readme file *

Second part: Annotating without HAnS-LSP


./guide/group1.md
./guide/group2.md

Disable the plugin.

1. To temporarily disable the HAnS-LSP extension -> go to extensions -> search for
HAnS-LSP -> click the gear button at the right of an extension entry.
2. Click “Disable”.

s: Enabled (Ctrl+Shift+X)
HAnNS-LSP-vscode-Extension v
undefined_publisher
Extention for HAnS-LSP-1S

Disable [ Uninstall Auto Update 3

DETAILS

hans-Isp-vscode-extension README

This is the extention for the HANS Language Server
Features
the extension offers autocomplete for annotations and featurenames:
GitLens — Git superc ![completion](images/completion.png)
- it within -
‘ the extension provides information when hovering over annotations:
![Hoverl(images/Hover.png)
Requirements

HANS-LSP-vscode-Extension JAVA jdk 22+ JAVA_HOME must be set
Extention for HANS-LSP-LS

undefined_publisher Known Issues

3. Click “restart extensions”

HARNS-LSP-vscode-Extension ve-e:

undefined_publisher

Extention for HANS-LSP-LS

Restart Extensions  Enmable |V Uninstall Auto Update TS

Warmup task

Add a .feature-to-folder file in the pojo folder. * Verify that the feature “Tile” is
defined in the .feature-model file. * Map the feature “DataTypes” to the new .feature-
to-folder file by writing it into that file. * To know how to map a feature to a folder you
can check again in the readme file *

You have now mapped the feature Data Types to the pojo directory.



Task 4

Implement a method ‘changeSpeed(long x){...} " that changes the speed of the snake
and annotate it as feature (choose a fitting name). * Hint 1: the speed is dependent on
the game speed Hint 2: gamespeed depends on the sleep time of the pause methode * *
Hint 3: the pause time depends on the delay variable * The method should be added to
/src/logic/ThreadsController.java file. The feature should be defined as a child feature
of Snake in the Feature Model.

Reminder: Make sure you annotate the code you write!
Task 5

Add a .feature-to-file file in the logic folder. * Verify that the feature “Controls” is
defined in the .feature-model file. * Map the feature “Controls” to the file KeyboardLis-

tener.java. * to know how to map a feature to a file you can check again in the readme
file *

Task 6

In the file /src/graphics/Window.java check all feature annotations. then go to .feature-
model file and check if each feature is defined there. If a feature is not defined in the
feature-model file add it.

Answer questions

After completing the tasks above, fill out the survey.

A.1.2 Tasks for group 2

Tasks to complete

During the task, take notes while coding, so you can answer the questionnaire after
completing all the tasks. Make sure you turn on auto-save in Visual Studio Code or save
your changes after every step for the extension to work correctly. See the README file
for clarification

First part: Annotating without HAnS-LSP

Disable the plugin.

1. To temporarily disable the HAnS-LSP extension -> go to extensions -> search for
HAnS-LSP -> click the gear button at the right of an extension entry.
2. Click “Disable”.


https://docs.google.com/forms/d/e/1FAIpQLSdcpbnTASBGH6cRMHw2DUJWOQm3MigtSJPRo37Q_eYchaOqZg/viewform?usp=sf_link

HANS-LSP-vscode-Extension e
undefined_publisher
Extention for HAnS-LSP-LS

Disable [v  Uninstall Auto Update  £55

DETAILS

hans-Isp-vscode-extension README

This is the extention for the HANS Language Server
Features
the extension offers autocomplete for annotations and featurenames:
I[completion](images/completion.png)

information when hovering over annotations:
I[Hover](images/Hover.png)

Requirements

HAnS-LSP-vscode-Extension 71ms JAVA jdk 22+ JAVA_HOME must be set
Extention for HANS-LSP-LS

undefined_publisher Known Issues

3. Click “restart extensions”

HARNS-LSP-vscode-Extension ve-e:

undefined_publisher

Extention for HANS-LSP-LS

Restart Extensions  Enmable |V Uninstall Auto Update TS

Warmup task

Add a .feature-to-folder file in the graphics folder. * Verify that the feature Playing Area
is defined in the .feature-model file. * Map the feature Playing Area to the new .feature-
to-folder file by writing it into that file. * To know how to map a feature to a folder you
can check again in the readme file *

You have now mapped the feature Playing Area to the graphics directory.
Task 1:

Implement a method ‘changeGrowth(int x){. ..}’ that changes the size, the snake grows
by and annotate it as feature (choose a fitting name). * Hint 1: the growth depends on
the growth variable * The method should be added to /src/logic/ThreadsController.java
file. The feature should be defined as a child feature of Snake in the Feature Model.



Reminder: Make sure you annotate the code you write!
Task 2:

Add a .feature-to-file file in the pojo folder. * Verify that the feature “Tile” is defined in
the .feature-model file. * Map the feature “Tile” to the file Tuple.java. * To know how to
map a feature to a file you can check again in the readme file *

Task 3:

Add a new feature (Choose any name) to the .feature-model file, then annotate both func-
tions, namely getWindowWidth() and getWindowHeight(), in a single block ( //&Be-
gin[you feature’s name] ... both functions logic. . ..//&End[you feature’s name] ). These
functions can be found in the /src/graphics/Window.java file. * To know how to anno-
tate a block of code you can check again in the readme file *

Second part: Annotating with HAnS-LSP

Enable the plugin.

1. to enable the HAnS-LSP extension -> go to extensions -> search for HAnS-LSP
-> click the gear button at the right of an extension entry.
2. Click “Enable”.

HANS-LSP-vscode-Extension we-e-1

undefined_publisher

Extention for HAnS-LSP-LS

Enable [%  Uninstall Auto Update {5}

This extension is disabled globally by the user.

Warmup task

Add a .feature-to-folder file in the pojo folder. * Verify that the feature “Tile” is
defined in the .feature-model file. * Map the feature “DataTypes” to the new .feature-
to-folder file by writing it into that file. * To know how to map a feature to a folder you
can check again in the readme file *

You have now mapped the feature Data Types to the pojo directory.
Task 4

Implement a method ‘changeSpeed(long x){...}’ that changes the speed of the snake
and annotate it as feature (choose a fitting name). * Hint 1: the speed is dependent on
the game speed Hint 2: gamespeed depends on the sleep time of the pause methode * *



Hint 3: the pause time depends on the delay variable * The method should be added to
/src/logic/ThreadsController.java file. The feature should be defined as a child feature
of Snake in the Feature Model.

Reminder: Make sure you annotate the code you write!
Task 5

Add a .feature-to-file file in the logic folder. * Verify that the feature “Controls” is
defined in the .feature-model file. * Map the feature “Controls” to the file KeyboardLis-

tener.java. * to know how to map a feature to a file you can check again in the readme
file *

Task 6

In the file /src/graphics/Window.java check all feature annotations. then go to .feature-
model file and check if each feature is defined there. If a feature is not defined in the
feature-model file add it.

Answer questions

After completing the tasks above, fill out the survey.

A.2 Questionnaire


https://docs.google.com/forms/d/e/1FAIpQLSdcpbnTASBGH6cRMHw2DUJWOQm3MigtSJPRo37Q_eYchaOqZg/viewform?usp=sf_link

HANS-LSP Survey

This is a questionnaire about the HANS-LSP services. ( e.g. hover, references,
definition, syntax highlighting, annotation completion); Not about the code annotation
itself.

Link to HAnS-LSP: https://github.com/isselab/HANnS-LSP/tree/test-with-plugin
Please note that there are 2 groups, answer the following question to know to which
group you belong.

* Gibt aine erfordarliche Fraoe an
GIDT elne erforaeriicne rrage an

About you

Background information about your programing experience

1.  To which of the following groups do you belong? *

Markieren Sie nur ein Oval.
Tst group: | used HANS-LSP for tasks 1-3 and plain Visual Studio Code for the
rest

2nd group: | used HANS-LSP for tasks 4-6 and plain Visual Studio Code for the
rest

2. How many years of experience do you have with Java? *

Markieren Sie nur ein Oval.

less than 1 year
1-2years
2 - 3 years
3 -4 years
4 - 5 years

more than 5 years



3.  What type of programming experience do you have? *

Wahlen Sie alle zutreffenden Antworten aus.

Educational

Professional

4. Have you ever annotated features in any project before? *
Markieren Sie nur ein Oval.

yes

no

5. If yes, which tool did you use to do it?

Waéhlen Sie alle zutreffenden Antworten aus.
HANS

Sonstiges:

Experience using HANS-LSP compared to without it

The following questions are about your experience using our feature annotation tool
and its services(hover, references, definition, syntax highlighting, annotation
completion) not the general benefits of code annotation.




6. To which extent would you agree with the following statements? *
Markieren Sie nur ein Oval pro Zeile.

Neither
Strongly _ Strongly
. Disagree agreeor  Agree
disagree . Agree
disagree
Creating
annotations
using the
LSP was
faster than

without

Creating
code
annotations
using the
LSP was
easier than
without

The code
completion
for creating
annotation
is useful to
me

it was easy
to create
feature-to-
file
mappings

it was easy
to create
feature-to-
folder
mappings



7. To which extent do you agree with the following statements regarding the
time required to complete tasks using HAnS-LSP?

Markieren Sie nur ein Oval pro Zeile.

Neither
Strongly ) Strongly
) Disagree agreeor  Agree
disagree ) Agree
disagree
check if
the
featureis
defined in
the
feature-
model file
was faster
using the
LSP

it was
faster to
locating
annotation
ofa
feature in
the code

using the
LSP it was
faster to
locating
feature in
feature-
to-file

it was
easy to
browse
feature-
to-folder
mappings



Usabilty of HAnS-LSP

The purpose of this form is to gather valuable feedback to enhance HAnS-LSP,
improving both its usability and performance. Our ultimate goal is to provide a
seamless, user-friendly experience for all users.



8.

To which extent do you agree with the following statements regarding HANS-

LSP?
Markieren Sie nur ein Oval pro Zeile.

Neither
Disagree agree or
disagree

Strongly
disagree

| think that |
would like to
use HANnS-
LSP
frequently.

| found the
system
unnecessarily
complex.

| thought
HAnS-LSP
was easy to
use.

| think that |
would need
the support
of a technical
person to be
able to use
this system.

| found the
various
functions in
this system
were well
integrated.

| thought
there was too
much
inconsistency
in this
system.

Agree

Strongly
Agree

*



| would
imagine that
most people
would learn
to use this
system very
quickly.

| found the
system very
cumbersome
to use.

| felt very
confident
using the
system.

I needed to
learn a lot of
things before
| could get
going with
this system.

9. What about the plugin would keep you from using it? *



10. What about the plugin do you like? *

11.  What were the biggest challenges you have faced while using HAnS-LSP? *

12.  What additional features do you think would enhance the usability of LSP-  *
HANS?

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstiitzt.

Google Formulare



	Introduction
	Contribution
	Organization of this Thesis

	Background, Motivation, and Related Work
	Feature
	Feature location
	Tool support
	JSON-RPC
	Language Server Protocol
	LSP4J
	ANTLR
	Motivation
	Related work

	Methodology
	Research design
	Tools and technologies used
	Development of the language server
	Development of the Visual Studio extension
	Testing and validation

	Implementation
	Structure of the language server
	First iteration
	Code completion
	Hover

	Second iteration
	Go to definition
	Go to reference


	Results
	Development outcome
	Correct parsing
	Code completion
	Locating Features in Code

	Evaluation of the user study
	First iteration of the user study
	Second iteration of the user study
	Conclusion of the user study
	Discussion


	Conclusion
	List of Figures
	List of Tables
	Bibliography
	Resources for user study
	Introduction
	Tasks for group 1
	Tasks for group 2

	Questionnaire




