RUHR RUB ®-» | Faculty of
UNIVERSITAT RU 3 . ® Computer
BOCHUM . @ o Science

Improving and Evaluating the Git Extension
Prototype "Git with Features"

Ho Thien Kim Nguyen

Abgabedatum — September 1 2025.
Software Engineering Faculty.

Erstpriifer: Prof. Dr. Thorsten Berger
Zweitpriifer: Prof. Dr. Daniel Striiber

Contents

Affidavit
Acronyms

1 Introduction
1.1 Context
1.2 Problem
1.3 Research Questions L.
1.4 Approach
1.5 Contribution

2 Related Work and Technical Background
2.1 Automated Feature Location
2.2 Pro-Active Annotations
2.2.1 Embedded Feature Annotations
222 FeatRacer
2.3 Integration Concept of Git with Features
2.3.1 Storing Feature Information
2.3.2 Extending Git with Custom CLI Commands

3 Methodology
3.1 Enhancing the Git Extension Prototype
3.2 Experiment Design L.
3.2.1 Hypotheses and Variables
3.2.2 Materials and Tasks
3.2.3 Participants and Experiment Execution
324 Analysis
3.2.5 Mitigation of Unexpected Tool Behavior

4 Results for the Prototype Improvement
4.1 Analyzing User Feedback
4.2 Issues Derived From the Feedback
4.3 Concrete Changes to the Research Prototype
4.3.1 New Command Names

1l

Contents

4.3.2 Manual Page and Web Documentation 15

4.3.3 Git Feature Blame Implementation 16

5 Results for the Experiment 17
5.1 Task Correctness 17
5.2 Completion Time 19
5.3 User Preference 20
54 Open Questions 23

6 Discussion 26
6.1 Answering RQL 26
6.2 Answering RQ2 27
6.3 Threats to Validity oo 27

7 Conclusion 29
7.1 Thesis Outcome 29
7.2 Current Limitations L 29
7.3 Future Work 30
List of Figures 31
List of Tables 32
List of Listings 33
Bibliography 34

v

Acronyms

Acronyms

AFL
CLI
FDD

IDE
IQR

OS

SPLE
SUS

XP

Automated Feature Location
Command Line Interface
Feature-Driven Development

Integrated Development Environment
Interquartile Range

Operating System

Software Product Line Engineering
System Usability Score

eXtreme Programming

1 Introduction

1 Introduction

Software development has evolved into a highly collaborative and dynamic process.
As a result, the complexity of software systems has increased significantly, leading
to the emergence of new concepts, methodologies, and tools that support software
developers in their work. Omne such concept is the notion of features. Features
typically describe the functionality of software systems [3]. They help to keep
an overview understanding of complex systems and provide a common language
for different stakeholders (from developers to domain and business experts). For
instance, agile methods like SCRUM, eXtreme Programming (XP) and Feature-
Driven Development (FDD) organize work around features [11]. Furthermore,
features help describe and distinguish software variants in software product lines
(SPLs). In addition, developers often label their commits with the feature they
are working on.

Many software-engineering activities are centered around features [8], such as ex-
tending or removing a feature, propagating a feature across variants, or consoli-
dating cloned features. In order to use features to manage and evolve systems, you
have to know the location of them. However, maintaining and recovering feature
locations can be very time-consuming. In fact, much of a developer’s time is spent
searching for the feature locations [4, 10, 13].

When we hear the term “collaborative software development”, we cannot imagine it
without the use of version control systems. Git is the most popular free and open
source distributed version control system that enables teams to manage codebases
and track changes [12]. Git allows developers to have multiple local branches that
can be entirely independent of each other. Developers can create new branches
for each new feature they are working on, switch back and forth between them,
and then delete each branch when that feature gets merged into the main line.
This lays the groundwork for a feature-based workflow. However, as mentioned
before, challenges in feature traceability remain. When software systems grow
historically, their complexity increases, making it harder to maintain or integrate
new features.

1 Introduction

1.1 Context

Standard Git workflows do not natively support feature-specific tracking, making
it difficult to isolate, maintain, and optimize features in large projects. Devel-
opers often spend excessive time manually identifying which files correspond to
specific features, keeping track of them, and writing appropriate commits. The
lack of streamlined feature management can slow productivity, increase develop-
ment errors and complicate maintenance tasks. In order to address these chal-
lenges, T. Rothemeyer created the first prototype of the Git extension Git with
Features as part of her Master’s thesis [9]. This extension introduces abstrac-
tions to better manage feature-specific changes and dependencies in the context of
feature-oriented software development.

1.2 Problem

The previous sections described the need for feature traceability support, and that
the first step to address this was the creation of the Git with Features prototype.
The next step is to determine the effectiveness and usability of this tool. There-
fore, this thesis will take the next step to further analyze what this tool is still
lacking, optimize it accordingly, and conduct a user study for empirical evalua-
tion.

1.3 Research Questions

To help solve the problem, we derive the following two research questions:

RQ1: How efficient is the use of Git with Features in comparison to
traditional Git for feature-oriented tasks?

This first research question aims at quantitatively comparing the two tools (stan-
dard Git vs Git with Features). It investigates whether the new tool leads to faster
task completion and fewer errors.

RQ2: How do users perceive the usability and integration of Git with
Features compared to traditional Git?

The second research question examines the subjective experience of users. It inves-
tigates whether users prefer Git with Features over using plain Git when performing
feature-oriented tasks.

1 Introduction

1.4 Approach

This bachelor’s thesis has two goals: (1) To provide an improved version of the
Git with Features prototype, and (2) to evaluate its usefulness by addressing the
research questions outlined above.

In order to add optimizations to the prototype, we first need to identify the
strengths and weaknesses of the tool. This step involves analyzing the user feed-
back from the initial prototype iteration. Based on these insights, corresponding
development issues will be created and implemented to the prototype.

For the evaluation phase, we will design an experiment aimed at assessing the
tool’s effectiveness and users’ perception of it. This will involve conducting a user
study to collect empirical data regarding the tool’s practical utility and its impact
on feature-oriented tasks. Finally, we will analyze the results and user feedback
to outline potential future improvements and directions for further optimization
of the tool.

1.5 Contribution

This bachelor’s thesis is expected to deliver an updated version of the Git with
Features prototype as well as the respective documentation explaining how to use
the tool. More importantly, it will provide empirical data from user tests that
further informs potential optimizations for future iterative development. On a
broader scope, this thesis will contribute to the research of supporting feature-
specific tracking in Git workflows.

2 Related Work and Technical Background

2 Related Work and Technical
Background

As mentioned in the introduction, features help developers to communicate and
implement specific program functionalities. For example, the management of fea-
tures is essential in software product line engineering (SPLE), where features are
described as units of variability [2, 6] — also referred to as optional features.
Previous research has proposed various feature location techniques in order to solve
this problem. This section aims to give an overview of different strategies and con-
cepts for feature traceability, and also explain the integration concept behind Git
with Features.

2.1 Automated Feature Location

Given a feature description, the goal of automated feature location (AFL) tech-
niques is to automatically identify the relevant code elements, such as functions,
classes, or files, that implement it. AFL techniques can be broadly categorized
into static and dynamic approaches [10]. Static techniques analyze the source code
without executing it. One of the earliest static approaches, proposed by Chen et
al. [5], uses program dependence analysis (PDA) to represent the program as a
graph. This graph is traversed from an initial element (e.g., a function or global
variable) to identify potentially relevant nodes.

In contrast, dynamic techniques rely on program execution. One of the earliest
dynamic approaches was proposed by Wilde et al. [14]. The main idea is to collect
runtime information and record which part of the code runs when a specific fea-
ture is exercised, and compare that to the runtime information when the feature
of interest is inactive.

Over the years, many efforts and proposals have been made to refine and close the
weaknesses of these techniques. For instance, both static and dynamic techniques
can be further categorized based on the type of output they produce: plain output,
which provides an unsorted list of software artifacts relevant to the feature, and
guided output, which ranks its elements by relevance [10].

2 Related Work and Technical Background

2.2 Pro-Active Annotations

Even though many automated feature location techniques have been proposed,
Schwarz et al. [11] argue that they require project specific setup effort and often
yield too many false positives to be useful in practice. Instead, they advocate
to manually record locations early in the development stage using a lightweight
annotation system.

2.2.1 Embedded Feature Annotations

Schwarz et al. [11] identified two main strategies for documenting features ex-
plicitly: (1) documenting feature information externally to the software assets,
such as in feature databases, and (2) documenting feature information internally
by embedding it into the software assets. They decided to implement the second
strategy, which requires an annotation system with a unified concise syntax to
embed the feature information into the software assets (e.g., code, folders, files).
This resulted in the creation of a consolidated notation for embedded feature an-
notations where the syntax is programming-language-independent. Their research
work also provided the tool FAXE (Feature Annotation eXtraction Engine) — a
library for parsing and retrieving annotation [11]. Another tool that exploits these
embedded annotations is FLOrIDA (Feature LOcatIon DAshboard) [1], which can
extract and process feature annotations as well as visualize them by presenting
views on different levels of abstractions.

2.2.2 FeatRacer

While embedded feature location produces less errors than automated feature lo-
cation techniques, recording features manually can be easily forgotten by develop-
ers, and is also costly when software evolves and recordings need to be updated.
Mukelabai et al. |7] presented FeatRacer, which combines active feature recording
with automated feature location to overcome the limitations of both approaches.
FeatRacer allows developers to continuously record features during development
while utilizing a machine-learning-based recommender system to suggest poten-
tially forgotten feature annotations. Specifically, FeatRacer learns from the com-
mit history of a project to learn the specific use and characteristics of features
and provide better recommendations. Compared to the traditional techniques,
FeatRacer shows a higher average precision and is proven to be effective for small
datasets.

2 Related Work and Technical Background

2.3 Integration Concept of Git with Features

These previous works all highlight the importance of feature traceability in modern
software development. They demonstrate that developing techniques and work-
flows to address common problems in feature-oriented software development re-
main an ongoing research challenge. From the two approaches described above,
the integration concept of T. Rothemeyer’s Git with Features is very similar to the
idea of pro-active annotations, as it embeds feature traceability directly into the
version control process.

2.3.1 Storing Feature Information

Whenever new feature information is created, it is pushed into and stored inside a
separate meta-data branch. This branch is structured such that each feature has
its own folder, and within these folders are subfolders for each commit associated
with the feature, creating a bidirectional mapping between features and commits
(Figure 2.1). Git reads this file structure and uses it to find associations between
code changes and features.

Commit
Feature +message
] +author
name: string +type="commit'
1 1
0..1 0..M
Feature Folder Commit Folder
1 0.N
name: string name: string
1
0..N

Feature Fact File

sha: string
timestamp: string
content: string

Figure 2.1: Entity-Relationship Model illustrating the association between features
and commits, from 9]

2 Related Work and Technical Background

2.3.2 Extending Git with Custom CLI Commands

’ Command

\ Description

git feature-status

Displays the current status of files in the working di-
rectory along with their associated features.

git feature-add
by-add

Stages specific files or all files and associates them with
the provided features.

git feature-add
from-staged

Associates features with the currently staged files. Cur-
rently, it derives the feature list from the previously
selected features for those files and is not fully imple-
mented yet.

git feature-commit

Associates feature information with an existing com-
mit.

git
feature-commits
list

Displays commits that are already associated with a
feature.

git
feature-commits
missing

Displays commits that are not yet been associated with
any feature.

git feature-blame

Shows what feature, commit and author last modified
each line of a file. Optionally, specify a range of lines.

git feature-info
all

Provides information about all features in the reposi-
tory.

git feature-info
feature

Shows a list of commits associated with a specific fea-
ture. Optionally, displays associated authors, files,
branches, and update status.

Table 2.2: Git Feature Commands

There are many possibilities to extend Git, for example, forking Git and creating
a separate variant, or setting custom configuration variables that control Git’s
behavior like Git config or Git hooks. Another option is the ability to add custom
subcommands to Git. This is achieved by adding them as executable scripts in
the system’s PATH and referencing them with git-<command_name>. In the first
iteration of the research prototype, each command was installed separately in the
PATH. Table 2.2 shows a list of all feature commands.

3 Methodology

3 Methodology

This chapter outlines the methodology used to enhance the research prototype
and evaluate its effectiveness. First, it describes the steps made to improve the
current prototype. Then, it presents the design of an experiment aimed at assessing
the usability and effectiveness of the optimized tool. This includes the research
variables and hypotheses, the experiment materials, and the approach used to
analyze both quantitative and qualitative data.

3.1 Enhancing the Git Extension Prototype

The first objective of this thesis was to develop an enhanced version of the Git
extension prototype. To inform and guide the optimization process, user feedback
from the initial iteration of the prototype was analyzed, which was provided in T.
Rothemeyer’s master’s thesis. Based on these insights, development issues were
defined and sorted by priority. Additionally, incomplete commands were analyzed
to determine their intended function and the order in which they should be fully
implemented.

3.2 Experiment Design

Once the optimizations of the research prototype were completed, the next step
was to design an experiment to gather further feedback on the Git with Features
integration. The main purpose of the experiment was to evaluate the usability
and effectiveness of the Git with Features tool in comparison to standard Git for
feature-oriented tasks. The experiment followed a within-subjects design, meaning
each participant completed tasks using both tools.

Participants had to complete eight tasks: four with standard Git and four with
Git with Features. Three of them were feature information retrieval tasks, and one
was a feature association task, respectively. To minimize learning effects, the order
of tool usage varied across participants. As a result, the experiment was divided

3 Methodology

into two phases: one in which participants used only standard Git, and another in
which they used only Git Feature commands.

3.2.1 Hypotheses and Variables

In this experiment, the independent variable is the type of tool used: plain Git or
Git with Features. Programming and professional experience were not taken into
account.

The dependent variable is efficiency, which was measured quantitatively using task
correctness rate and completion time. Completion time was measured in seconds,
and task correctness rate was assigned by points. Task correctness was determined
from the task solution answers and from the experiment recordings. Partial cor-
rectness was also noted.

For instance, if a participant only partially completed a task — such as identifying
only one required file instead of two — a score of 1 was assigned to reflect partial cor-
rectness. Furthermore, we used a questionnaire to qualitatively assess user satisfac-
tion, perceived cognitive effort, and overall tool preference.

For the two research questions stated in section 1.3, the following hypotheses were
formulated, respectively:

H1: Using Git with Features for feature-oriented tasks is more efficient
than using traditional Git.
This hypothesis was tested by examining completion time and task correctness.

H2: Users perceive Git with Features to be more usable for feature-
oriented tasks and prefer it over plain Git.

This hypothesis was tested through a post-experiment questionnaire in which par-
ticipants reflected on their experience with Git with Features and stated their
overall tool preference.

3.2.2 Materials and Tasks

Tools. The experiment was conducted on each participant’s personal computer,
regardless of the OS or IDE used. The only prerequisites were that both Python
and Git were installed on the system. To ensure consistency in data collection and
reduce manual effort for time recording, participants were encouraged to use OBS
Studio for screen recording.

Each participant was provided with the Git with Features package file, along with
access to the Git repository in which they completed a predefined set of tasks.

3 Methodology

The repository used in the experiment contained an implementation of a simple
calculator application.

To support participants during the setup and task execution, the following re-
sources were included: an installation guide, a list of helpful Git commands for ex-
ploring commit history, and a documentation for Git with Features.

Questionnaire. After the completion of the two phases, a questionnaire elicited
the participants’ perceptions of the respective tool. Rather than using a standard-
ized methodology such as the System Usability Scale (SUS), we opted to create
a custom set of questions. The primary reason for this decision is that SUS is a
generic usability instrument that focuses on overall system interaction, which does
not align closely with the specific goal and functionality of the Git with Features
tool.

The custom questions were designed to assess user perception and satisfaction
with the tool. Closed questions had a five-point Likert scale with options ranging
from “strongly disagree” to “strongly agree” (e.g., “Compared to plain Git, Git with
Features helped me find relevant feature-related information more easily.”, “The
commands provided by Git with Features felt intuitive and logically structured.”,
“Git with Features integrates well with how I normally use Git.”).

Open questions aimed to be exploratory and elicit qualitative feedback (e.g.,
“Were there any tasks where the tool didn’t help as expected?”, “What do you
think needs the most improvement?”, “Any suggestions for additional features or
commands?”). The final question asked which of the two tools the participant
preferred for feature-oriented tasks, and invited them to explain their reason-
ing.

Tasks. The tasks simulated common feature-oriented development operations,
such as finding information about a specific feature (e.g., commits, authors, files,
branches) or adding feature annotations to commits. The following four tasks were
to be solved with plain Git:

1. If you have questions about the feature subtract, whom do you ask? Write
down name and e-mail address.

2. Which files were touched to implement the feature log?

3. Compare the branches feat-gui and main. Which features exist on main, but
not in feat-gui?

4. Create a new feature divide and commit your changes! What commit mes-
sage did you choose?

The following four tasks, which are similar to the plain Git tasks, were to be solved
with Git Feature commands:

10

3 Methodology

1. How many authors does the feature core have?
2. Which files were touched to implement the feature op-select?

3. Compare the branches feat-square and main. Is the main branch up-to-date
regarding the feature square?

4. Create a new feature multiply, commit your changes, and associate the fea-
ture multiply with the newest commit! What commit message did you
choose?

3.2.3 Participants and Experiment Execution

For the experiment, 10 computer science students were recruited who met the
requirement of having basic experience with Python and Git. In order to accom-
modate the schedule of each participant, the experiment was designed so that they
could perform it remotely. At the end of the user study, participants were asked
to upload their screen recordings to the Google Drive link provided. As compen-
sation, participants were able to enter a raffle for a voucher.

This study did not collect demographic details such as Git proficiency or level
of programming skill. Given that participants meet a minimum baseline of Git
and Python knowledge, further demographic distinctions were considered unnec-
essary, since the primary goal is to evaluate the effectiveness of the tool itself.
Furthermore, since the number of participants is limited, the collection of demo-
graphic data would not have enabled any statistically significant subgroup analy-
sis.

3.2.4 Analysis

The two metrics completion time and task correctness allowed us to test the first
hypothesis.

To measure completion time, we identified the first and last edits that a user per-
formed on a task from the screen recordings. Completion time excludes reading the
task description and entering the task answer. Then, we measured the correctness
of the task solutions by analyzing the screen recordings in-depth, focusing specif-
ically on the combined usage of the commands and assigning points accordingly.
For all participants and tasks, we verified that each task was completed, making
a subjective assessment of whether the solution was structurally correct with only
a few errors.

11

3 Methodology

To answer the second hypothesis, we visualized and analyzed the questionnaire re-
sponses using stacked bar charts (Likert questions) and by inspecting the open-text
responses.

3.2.5 Mitigation of Unexpected Tool Behavior

After conducting the dry-run, the following irregularities occurred:

e The feature info command that compares branches using the two flags
--updatable and --branch did not produce the expected output, returning
only an empty list. This is because the command can only compare local
copies of branches, which are not available just by cloning the repository.

e For unknown reasons, the feature status command currently throws an
error when executed.

To minimize the impact of these behaviors, we included a notice inside the task
description and documentation with the instruction that remote branches be pre-
fixed with origin/. Since the tasks could be solved without using this command,
we also opted to not include the feature status command in the experiment
documentation to avoid confusion with participants.

12

4 Results for the Prototype Improvement

4 Results for the Prototype
Improvement

In this chapter, we present the results for the prototype optimization from the
methodical approach previously detailed in section 3.1.

4.1 Analyzing User Feedback

This section focuses on analyzing the user feedback collected from the initial pro-
totype user study detailed by T. Rothemeyer [9]. This information will help
determine the next steps for developing the second iteration of Git with Fea-
tures.

Positive. The participants who favored Git with Features noted the following ben-
efits: (1) Clarity in feature management, (2) ease of information retrieval, and (3)
concise commands, particularly for complex projects. The first two points indicate
that the tool is effective in organizing and presenting feature-related information.
The third point suggests that the command structure is perceived as logical and
intuitive.

Negative. Participants who were more critical of the tool mentioned three con-
cerns: (1) Familiarity with Git, (2) interface inconsistencies, and (3) reliance on
third-party tools.

e Familiarity with Git: This concern came from participants already proficient
with Git, who felt no additional tool was necessary for managing feature-
oriented tasks. Two possible interpretations arise: either the tool was not
perceived as sufficiently novel to warrant its use alongside standard Git com-
mands, or the experimental tasks were too simple to fully demonstrate the
tool’s potential advantages.

e Interface Inconsistencies: The second point suggests that the initial proto-
type does not yet feel like a genuine extension of Git. This raises the following

13

4 Results for the Prototype Improvement

question: How can the tool be better integrated with Git so that users per-
ceive it as a natural and seamless addition? Bridging this gap may involve
refining the user interface, aligning command structures with Git conven-
tions, or enhancing interoperability with existing Git workflows. Since this
is a point where most work can be done, improving this aspect was the main
focus of this thesis.

Reliance on Third-Party Tools: Finally, some users noted the need to have
Python installed as a drawback. However, this dependency cannot be easily
changed, since the tool itself is implemented in Python. While it is a valid
concern, it is considered out of scope for this iteration, given the technical
constraints of the current implementation.

4.2 lIssues Derived From the Feedback

Based on the user feedback and feasibility, we identified three main areas requiring
improvement:

1.

2.
3.

Experiment that better showcases the tool’s performance in more complex
scenarios

More intuitive command names

Completeness of the feature set

To highlight the tool’s strength in projects with more widely scattered features,
we increased the complexity of the test repository by adding more code, features,
files, folders, and branches. We also revised the command structure to reduce
ambiguity and align it more closely with common Git commands. Additionally, we
fully implemented the git feature blame command, which remained incomplete
in the initial version. These decisions laid the groundwork for the concrete changes
detailed in the next section.

14

4 Results for the Prototype Improvement

4.3 Concrete Changes to the Research Prototype

] Initial Command Names \ New Command Names ‘
git feature-status git feature status

git feature-add by-add git feature add

git feature-add from-staged | git feature add-from-staged
git feature-commit git feature commit

git feature-commits list git feature commits list

git feature-commits missing | git feature commits missing
git feature-blame git feature blame

git feature-info all git feature info-all

git feature-info feature git feature info

Table 4.1: Old and New Git Feature Command Names

4.3.1 New Command Names

In the initial version of the tool, commands followed the following format: git
feature-<command_name>. In the updated version, two key changes were made to
improve usability and consistency with standard Git conventions:

e The dash (-) between feature and <command_name> was removed.

e Redundant wording in commands (e.g., feature-add by-add, feature-info
feature) was removed.

The new command structure now mirrors the same naming pattern used in Git
commands (e.g., git status, git commit, git branch list). This revised for-
mat aims to improve readability and make the commands less verbose.

This was achieved by assembling all git feature commands under one CLI app with
git feature as the top-level command, and installing this app as a single exe-
cutable script, instead of installing each command separately.

4.3.2 Manual Page and Web Documentation

As a byproduct of the command restructuring, the help flag now displays help text
for all subcommands (except for git feature itself), which did not work before
in the initial prototype. For the sake of completeness, we created a Manpage
and a Web Documentation page for the tool, each in the likeness of standard Git

15

4 Results for the Prototype Improvement

documentation accessed via the help flag. However, installing these documents
system-wide is not feasible without root privileges from the user, so the user has
to install them manually.

. AVRAN A
git-feature(1) Manual Page COMMANDS

With no subcommands, shows the help text. Several subcommands are
NAME available to track and manage feature information.
git-feature - Manage set of tracked repositories status

Displays the current status of files in the working directory, showing staged,
SYNOPSIS unstaged, and untracked changes along with their associated features. This
- g command is intended to be used with the following commands to add
feature information while staging files. It can also be used to aid in the

odd <feature_names> (-a | —-all | -f <file_name -files selection of files for the next commit.

add
d> [-features <feature_name=] Stage specific <file_ names> or all files and associate them with the provided
features.

With -a or --all.you can stage all tracked changes and associate them
with the features.

With -f or --files,you can stage a <file_name> and associate it with the
features. You can use this option multiple times to stage multiple files.

add-from-staged
DESCRIPTION Associate features with the currently staged files. Currently, it derives the

feature list from the previously selected features for those files and is not

Associate features with commits and files in a repository, manage feature fully implemented yet

metadata, and inspect feature-related information.

Figure 4.2: Excerpts from the web documentation

4.3.3 Git Feature Blame Implementation

The git feature blame command was one of the functionalities that remained
only partially implemented during the first iteration. This command is designed
to display the features associated within a given file, including detailed map-
ping of a feature to specific file lines. Below is an example usage of the com-
mand:

$ git feature blame src/main.py --line 3-4
op-select, core (abcd123 Jane Doe 2024-09-10 3) # code
op-select, core (abcd123 Jane Doe 2024-09-10 4) # code

Listing 4.3: Output Example for Git Feature Blame

In this output (Listing 4.3), each given file line of main.py is annotated with the
corresponding feature identifiers, followed by the commit hash, author, date, and
the affected line number. The format closely resembles the output of git blame,
but extending it with the additional context of features. The intention is to make
it easier for developers to answer not only who introduced a particular line of code,
but also why it exists.

16

5 Results for the Experiment

5 Results for the Experiment

In total, we collected around 5.5 hours of screen recordings as well as question-
naire responses from all 10 participants. This section presents the analysis results,
discussing key metrics and insights from the quantitative and qualitative data col-
lected during the user study, with the methodical approach detailed in section 3.2.
Since the questions are structured such that the effort required and the information
being searched for is comparable, the results for task error rate and the completion
times can be measured against each other, respectively.

5.1 Task Correctness

Figure 5.1 shows the distribution of task correctness across different setups.

Task 1 In both the plain Git and Git with Features setups, all participants cor-
rectly solved the task of retrieving author information about a specific feature. In
terms of correctness rates, Git with Features does not display an advantage over
plain Git.

Task 2 Similar to Task 1, Task 2 involves retrieving file information about a
specific feature. Here, the benefit of Git with Features is more obvious, as all
participants achieved correct solutions. By contrast, the plain Git setup yields
more mixed outcomes: 4 out of 10 participants solved the task incorrectly or only
partially correctly.

Task 3 Regarding the branch comparison task, both setups yielded mixed results,
with plain Git reaching 50% correctness, while Git with Features reaching only
40%. This suggests that the use of the Git extension may have posed unexpected
challenges.

Task 4 Figure 5.1d shows that 6 out of 10 participants correctly solved the feature
association task using plain Git, whereas in the Git with Features setup, 9 out of
10 participants correctly solved the task. In regards to correctness rates, Git with
Features displays an advantage over plain Git.

17

5 Results for the Experiment

To summarize, the results indicate that for simple information retrieval tasks such
as Task 1, both setups perform equally well in terms of correctness. Furthermore,
Git with Features provides clear benefits in more complex scenarios such as file
information retrieval and feature association. However, the dip in performance
in the branch comparison task shows that the extension still displays some chal-

lenges.
10 10
§2) 2
c c
38 38
.0 .0
S 6 S 6
o o
] kS
5 4 s 4
QO QO
E E
z z
0 o
Plain Git Git with Features Plain Git Git with Features
I |ncorrect mmm Correct I |ncorrect mmm Correct
Partially Correct Partially Correct
(a) Task 1 (b) Task 2
10 10
@ £
C c
88 88
0 ©
S 6 T 6
a o
] kS
5 4 s 4
QO Q0
g 2 - . g 2
Z prd
0 0 [
Plain Git Git with Features Plain Git Git with Features
HEE |ncorrect mmm Correct HEE |[ncorrect mmm Correct
Partially Correct Partially Correct
(c) Task 3 (d) Task 4

Figure 5.1: Proportion of Correctness per Task

18

5 Results for the Experiment

5.2 Completion Time

Figure 5.2 shows the average time needed to complete the tasks with the different
tools. Note that we are only looking at the time data of correct attempts, since
"fast but wrong" results are not desirable outcomes.

Task 1 For the Plain Git setup, the median completion time is higher than that of
the Git with Features setup. Plain Git also shows a greater variability, including an
outlier at 11 minutes. This suggests that the additional tooling helped users per-
form the retrieval of author information more quickly.

Task 2 The difference is more noticeable here. The Plain Git setup has a higher
median completion time of 2.6 minutes and a much bigger interquartile range
(IQR). This indicates that users needed significantly more time to find file infor-
mation when using only Plain Git. Meanwhile, Git with Features has a median of
0.5 minutes with a small IQR, which suggests that the use of this tool makes the
file information retrieval a matter of seconds.

Task 3 The median completion time for Git with Features is slightly higher than
that for Plain Git, but the spread is narrower with one outlier at above 8 minutes.
Compared to the previous two tasks, the results do not display a benefit of Git
with Features over Plain Git. However, the results among participants are more
consistent for Git with Features than for Plain Git.

Task 4 Interestingly, this is the only task where Plain Git clearly outperformed G't
with Features in regards to completion time. Git with Features has a significantly
higher median completion time and greater spread with one outlier at above 12
minutes. This suggests that the task of feature association may have introduced
some complexity or confusion.

Overall, Git with Features significantly outperforms Plain Git for simple feature
information retrieval tasks. For Task 3, which deals with more complex information
retrieval such as branch comparison, Plain Git and Git with Features perform
similarly, with Plain Git displaying more variability among the participants. For
Task 4, which involves feature association, Git with Features took significantly
longer than Plain Git.

19

5 Results for the Experiment

12 o
(o]
10
o
8
m
Q
]
E Setup
> 6 I Plain Git
£ o [Git with Features
'_
4
2 g
0
Task 1 Task 2 Task 3 Task 4

Figure 5.2: Completion Time per Task

5.3 User Preference

Figure 5.3 shows the questionnaire responses in regards to their subjective ex-
perience with using the new tool. Participants largely found the feature useful
for locating relevant information, indicating strong support for its effectiveness
in this area. Regarding its impact on the mental load to perform the task, the
opinions are more mixed. Some users felt it reduced mental effort, but others ei-
ther disagreed or were neutral, suggesting room for improvement in intuitiveness
or workflow integration. Most users found the commands reasonably intuitive,
though not overwhelmingly so. Some users may have found them confusing or
non-standard, possibly due to unfamiliar syntax or logic. Integration into existing
workflows appears to be the most controversial point. While some users appre-
ciated the integration, others found it incompatible with their typical Git usage.
This suggests either a steeper learning curve or a mismatch with expected work-
flows.

20

5 Results for the Experiment

Scale
...helped me find relevant feature- mmm Strongly Disagree
related information more easily. Disagree
Neutral
Agree

...helped reduce the mental effort

]
needed to perform the tasks. Strongly Agree

The Git Feature commands felt intuitive
and logically structured.

Git-with-Features integrates well with
how | normally use Git.

0 2 4 6

co
-
o

Figure 5.3: Questionnaire Responses

At the end of the questionnaire, participants were asked to state their tool pref-
erence on a scale of 1-5, where 1 indicated strong favor of traditional Git and 5
strong favor of Git with Features. In figure 5.4, the results are visualized. Half of
the participants prefer Git with Features, while the rest are either neutral or prefer
plain Git.

Which setup do you prefer overall for Scale
tasks similar to those from this mmm Strong Preference for Plain Git
experiment? Preference for Plain Git
Neutral
0 2 4 6 8 10 Preference for Git with Features

mmm Strong Preference for Git with Features

Figure 5.4: Overall Preference Responses

To gain a better understanding of the reasoning, looking into the explanations for
the participant’s choice can be interesting, which is listed in table 5.5. The follow-
ing gives an overview of the reasoning in favor and against the tool:

e Plain Git Preference: Users that preferred plain Git also prefer using
built-in Git functionality of IDEs instead of using Git in the CLI.

e Neutral: Users who had no preferences gave the reasoning that they are
already familiar with existing built-in JetBrains Git UI, which they find
intuitive. They also noted that the choice of tool depends on the size of the
project: while the Git extension can be beneficial for smaller projects, it may
become redundant in very large projects with many minor features. However,

21

5 Results for the Experiment

although they are more experienced with standard Git, they remain open to
using the extension when appropriate.

Git Extension Preference: Users preferred the Git extension because
it allowed them to work faster than with plain Git. They found that Git
with Features made it easier to navigate between features, which they would
find valuable in larger codebases and commit histories. The extension also
helped them more easily understand how different parts of the code related
to specific features. For the given tasks, they felt it was simpler and more
efficient to complete the work using Git with Features. Additionally, they
noted that standard Git depends heavily on well-structured commit messages
and filtering, and parsing them was more cumbersome compared to the Git

extension.

Preference for Plain Git:

"T dont like to work in a terminal. Normally I use in-build git functionality of
PyCharm/IntelliJ",

"T dont see myself working too much with git in the cli. I also prefer Embedded
Feature Annotations a little bit."

Neutral:

"T have been using the Git Ul of Jetbrains and it was more intuitive.",
"Depending on the size of the project. For smaller projects like this one using
Git-with-Features seems beneficial, however when projects get extremely big
with a huge number of small features that are not referenced or used frequently
later on it might be redundant",

"T prefer both, regarding I am more experienced in Standard Git, I am open
to use the Git extension as well."

Preference for Git with Features:

"was faster than with git",

"Git-with-feature allows for navigating for features faster which is likely very
useful in larger code bases."

"it felt easier to find how things relate to a feature"

Strong Preference for Git with Features:

"With the given tasks, it was easier to solve with Git with Features.",
"Standard git relies on structured commit messages and the filter options aren’t
that great compared to git-with-features"

Table 5.5: Overview Tool Preference Reasonings

22

5 Results for the Experiment

5.4 Open Questions

To further gain a better understanding and help improve the tool in the future, I
elicited qualitative feedback from three open questions. The comments are listed
in the tables 5.6, 5.7 and 5.8.

Workflows. When asked about unclear or unexpected command behaviors, par-
ticipants most often mentioned the branch comparison task and the commit task,
since they were unsure about which command to use in certain situations and also
about the output. Additionally, a comment pointed out that the tool provided lit-
tle advantage over standard Git when retrieving author information, particularly
in small projects.

Improvements. When asked about potential improvements, participants men-
tioned three main areas: (1) Simplifying and shortening commands, (2) improving
installation instructions for non-Windows platforms and virtual environments, and
(3) refining the workflow steps for committing and feature association. Partici-
pants also raised concerns about project scalability when a project amasses a large
number of features during its development.

Suggestions. Suggestions for additional features or commands included integrat-
ing features in the git-log viewer of JetBrains IDEs, adding a new flag to the git
feature commit command to automatically get the latest commit id and add
features at the same time, and also the ability to track the feature status, e.g.,
"Working" and "Done".

Overall, the questionnaire responses indicate that there is room for improve-
ment regarding the Git Feature commands and the feature association work-
flows, as well as providing a better installation guide for non-Windows platforms.
While the core functionality was generally understood, the feedback shows that
reducing command complexity and offering better integration with existing Git
workflows could significantly increase adoption and efficiency for more complex
tasks.

23

5 Results for the Experiment

’ Were there any tasks where the tool didn’t help as expected? Why? ‘

"Finding authors wasn’t as different here but i’d imagine the difference is
greater in larger projects with more collaborators"

"when displaying the square feature and ist information, the cli didnt return
any information, which made sense to me. There might not be any commits
in the main branch for the feature square."

"Yes, from the first section the last task. I thought I need to find a suitable
command from the list "Documentation Git Feature Commands" you pro-
vided. Maybe I should have used one, but at the end I used the standard git
commands."

"oit feature add --files $filename’ was not working as expected for me i.e.
failed but I assume that to be an error in my installation or usage of the tool.
‘git associating a commit with a feature afterwards seems to have worked on
the other hand."

"comparision inbetween how branches implement feature"

"The "git feature commit" command sounds like it should commit the staged
files directly into a feature"

Table 5.6: User feedback on tool workflows

What do you think needs the most improvement? ‘

"commands can sometimes become very long, feature add command has the
same name of default git add command but different functionality"

"Some changes in the wording of the documentation could have helped me but
I think this issue was more specific to me personally."

"scalability of features might be a problem in git features info-all. Once the
project ages many years, there could be an overview issue with so many fea-
tures"

"Maybe if you show the log with all the commits added, that you can filter
out the feature commits there."

"The documentation in regards to installation such as non windows platforms
& virtual environments pipx etc."

"documentation got lost in the comparison taske because of it"

"Using this feature requires 2 commands for committing: (1) Regular git com-
mit and (2) adding a commit to a feature. In my opinion, it would be much
easier/better to have a single command which does both. Right now, commit-
ting is just made harder because one has to do an extra command."

Table 5.7: User feedback on areas requiring improvement

24

5 Results for the Experiment

’ Any suggestions for additional features or commands? ‘

"Including features in the git-log viewer of Jetbrains IDEs"

"1. adding a new feature to a commit could be easier, by using a flag —latest
instead of manually getting the id with —log -1 2. Adding a feature in the git
add or git commit directly would be great. Info: I have not tried if finding the
difference between the main and feature branch is easier with the command
line."

"Typing "git feature" feels weird, as it looks like 2 arguments and it feels like
I'm using git and not an extension/add-on. To also avoid any legal complaints,
I would call it "git-feature" so it is intuitive for the user that this is one
argument and not really the standard git."

"Feature-status tracking? e.g. Working, Done, etc."

Table 5.8: User suggestions for additional features

25

6 Discussion

6 Discussion

The objective of this thesis was to provide an updated version of the Git with Fea-
tures prototype as well as evaluate its efficiency and usability. Now that the results
of the analysis are in hand, we can address the research questions. This chapter
discusses the results, including possible threats to validity that may influence the
reliability of these results.

6.1 Answering RQ1

RQ1: How efficient is the use of the Git with Features tool in com-
parison to traditional Git?

The analysis shows that for simple feature information retrieval tasks, Git with
Features achieves high efficiency compared to Plain Git, even with an ideally
structured commit history. However, the tool is not yet efficient in regards to
branch comparison tasks or commit-based feature association tasks. To increase
the tool’s efficiency for branch comparison workflows, the tool needs to yield more
correct results. This can be achieved by making the feature commands more con-
cise and also making them work with remote branches. Furthermore, to increase
the tool’s efficiency for feature association tasks, the respective workflow needs
to be faster. This can be supported by making the usages of git feature add
and git feature commit more clear and concise in the documentation, as well as
introducing a new workflow that allows features to be associated directly during
committing.

26

6 Discussion

6.2 Answering RQ2

RQ2: How do users perceive the integration and usability of Git
with Features compared to plain Git?

The majority of participants agreed that Git with Features supported them in lo-
cating relevant feature-related information more easily, suggesting an improvement
in usability over plain Git. However, perceptions of the required mental effort and
the intuitiveness of the new commands were more mixed, with a considerable num-
ber of participants selecting "Neutral". Additionally, with respect to integration,
half of the participants felt that the tool did not fit well into their existing Git
workflows. Overall, while half of the participants expressed a preference for the
extension, the other half had some reservations about it. This suggests that while
Git with Features shows promise, the current version of the prototype requires
further refinement.

6.3 Threats to Validity

In this section, potential threats to the validity of the study’s results are high-
lighted, categorized into internal, external, and construct validity. We follow the
definitions of these categories as described by Wohlin et al. [15].

Internal validity. One internal threat that affects the independent variable effi-
ciency without the researcher’s knowledge could stem from accidental mistakes in
data collection, such as misrecorded task correctness and completion times.
Another possible threat is that a learning effect may be created due to repeated
testing in similar tasks but using different tools. This was mitigated by having half
of the participants start with the Plain Git setup, and the other half start with G't
with Features. However, a small learning effect could still happen when progressing
from one task to the next within the same setup.

External validity. The current user study design of this thesis limits our abil-
ity to generalize the results to industrial practice. Real-world projects often have
more complex branching structures, inconsistent commit messages, and varying
levels of documentation. While the tool performs well in a simplified environment,
it remains unknown how it would handle repositories with high technical debt or
inconsistent feature tracking.

Furthermore, the experiment in its current form does not reflect a setting of col-
laborative software development, since each participant is solving feature-oriented

27

6 Discussion

tasks on their own. This limits the insights of the tool used when multiple develop-
ers interact with the same repository at the same time.

Construct validity. The construct validity may be impacted by the evaluation
metrics and tasks chosen for the user study. Currently, the tasks do not fully
reflect the complexity of real-world scenarios, and they also do not elicit the use of
the whole feature command set. In addition, since the experiment had to be kept
small-scale, the number of feature-oriented tasks were limited. Consequently, the
user study may not provide a complete picture of the tool’s performance or reveal
all of its potential limitations.

28

7 Conclusion

7 Conclusion

To conclude the bachelor’s thesis, this chapter summarizes the outcomes and dis-
cusses them in a broader context. Additionally, limitations are presented alongside
possible future directions from which some overlap with the directions described
in T. Rothemeyer’s Master’s thesis [9].

7.1 Thesis Outcome

This bachelor’s thesis presented an improved version of the research prototype as
well as conducted an experiment that investigated the effects of Gt with Features
on feature-oriented tasks, such as feature information retrieval and commit-based
feature association. The study was conducted with 10 participants, primarily
computer science students with basic experience in Git and Python. The results
show that efficiency with Git Feature commands can be achieved for basic feature
information retrieval tasks. Moreover, the proportion of positive user response
indicates that this line of research is promising.

Nonetheless, the workflows for branch comparison tasks and feature association
require further refinement to ensure that the intended command functionalities
become obvious to users.

7.2 Current Limitations

While the development of the Git with Features tool has shown promising results,
the following limitations affect its current usability and scope:

1. Incomplete Functionality of Git Feature Commands: Due to time
constraints, we could only focus on fully implementing the feature blame
command. The user feedback, however, indicated that a few other feature
commands and workflows, such as feature association, require more refine-
ment to reliably produce their intended output.

29

7 Conclusion

2. Python Dependency: Currently, the tool cannot yet be run as a stan-
dalone program. Developers must have a recent version of Python installed,
because no platform-specific distributables for Windows, macOS, or Linux
are provided yet.

7.3 Future Work

After showing the results and limitations, the following points can be considered
for future directions:

1. Refining User Interface and Workflows: In regards to the first lim-
itation point, the focus of the next iteration should be on perfecting the
functionality of the Git Feature command set. Concrete examples that need
optimization can be found in sections 3.2.5 and 6.1. There are also a few
interesting suggestions worth exploring, for example, displaying the develop-
ment stage of each specific feature. This could give a good overview of the
features in bigger projects where you can filter features by "Working" and
"Done".

2. Experimental Methodology: Instead of just looking at how efficient the
tool is during short test sessions, measurements over weeks or months can be
considered to provide deeper insights and improve the reliability of the user
study results. At first, users are slower because they need to learn the new
commands and adapt to the new workflows. Over the long term, the initial
slowness can be bridged once users get past the learning curve, so that the
tool might prove to be much more efficient than it first appeared.

30

List of Figures

2.1

4.2

5.1
5.2
5.3
5.4

Entity-Relationship Model illustrating the association between fea-

tures and commits, from [9] 6
Excerpts from the web documentation 16
Proportion of Correctness per Task 18
Completion Time per Task 20
Questionnaire Responses 21
Overall Preference Responses 21

31

List of Tables

2.2 Git Feature Commands, 7
4.1 Old and New Git Feature Command Names 15
5.5 Overview Tool Preference Reasonings 22
5.6 User feedback on tool workflows 24
5.7 User feedback on areas requiring improvement 24
5.8 User suggestions for additional features 25

32

List of Listings

4.3 Output Example for Git Feature Blame

33

Bibliography

1]

2l
3]

4]

[10]

B. Andam, A. Burger, T. Berger, and M. R. V. Chaudron. “FLOrIDA: Fea-
ture LOcatlon DAshboard for Extracting and Visualizing Feature Traces”.

In: Proceedings of the 11th International Workshop on Variability Modelling
of Software-Intensive Systems (VAMOS). 2017 (cit. on p. 5).

S. Apel, D. Batory, C. Késtner, and G. Saake. Feature-Oriented Software
Product Lines. Springer, 2013 (cit. on p. 4).

T. Berger, D. Lettner, J. Rubin, P. Griinbacher, A. Silva, M. Becker, M.
Chechik, and K. Czarnecki. “What is a Feature? A Qualitative Study of
Features in Industrial Software Product Lines”. In: Proceedings of the 19th
International Software Product Line Conference (SPLC). 2015 (cit. on p. 1).

T. J. Biggerstaft, B. G. Mitbander, and D. Webster. “The concept assignment
problem in program understanding”. In: Proceedings of the 15th International
Conference on Software Engineering (ICSE). 1993 (cit. on p. 1).

K. Chen and V. Rajlich. “Case Study of Feature Location Using Dependence
Graph”. In: Proceedings of the 8th International Workshop on Program Com-
prehension (IWPC’00). IEEE, 2000, pp. 241-249 (cit. on p. 4).

P. C. Clements and L. M. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002 (cit. on p. 4).

M. Mukelabai, K. Hermann, T. Berger, and J.-P. Steghofer. “FeatRacer:
Locating Features Through Assisted Traceability”. In: IEEE Transactions
on Software Engineering 49.12 (Dec. 2023) (cit. on p. b).

L. Passos, K. Czarnecki, S. Apel, A. Wasowski, C. Késtner, and J. Guo.
“Feature-oriented software evolution”. In: Proceedings of the 7th International
Workshop on Variability Modelling of Software-Intensive Systems (VAMOS).
2013 (cit. on p. 1).

T. V. Réthemeyer. “Extending Git for Feature-Oriented Development”. M.S.
thesis. NRW, Germany: Chair of Software Engineering, Ruhr-Universitét
Bochum, 2024 (cit. on pp. 2, 6, 13, 29).

J. Rubin and M. Chechik. “A Survey of Feature Location Techniques”. In:
Domain Engineering. 2013 (cit. on pp. 1, 4).

34

Bibliography

[11]

[12]

[13]

[14]

[15]

T. Schwarz, W. Mahmood, and T. Berger. “A Common Notation and Tool
Support for Embedded Feature Annotations”. In: Proceedings of the 2/4th
ACM International Systems and Software Product Line Conference - Volume
B (SPLC ’20). New York, NY, USA: Association for Computing Machinery,
2020 (cit. on pp. 1, 5).

Git SCM. Git — Branching and Merging. URL: https://git-scm.com/
about/branching-and-merging (visited on 08/16,/2025) (cit. on p. 1).

J. Wang, X. Peng, Z. Xing, and W. Zhao. “How developers perform feature
location tasks: a human-centric and process-oriented exploratory study”. In:
Journal of Software: Evolution and Process 25.11 (2013), pp. 1193-1224 (cit.
on p. 1).

N. Wilde and M. C. Scully. “Software Reconnaissance: Mapping Program

Features to Code”. In: Journal of Software Maintenance: Research and Prac-
tice 7.1 (1995), pp. 49-62 (cit. on p. 4).

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Ezperimentation in Software Engineering. Springer, 2012 (cit. on p. 27).

35

https://git-scm.com/about/branching-and-merging
https://git-scm.com/about/branching-and-merging

	Affidavit
	Acronyms
	Introduction
	Context
	Problem
	Research Questions
	Approach
	Contribution

	Related Work and Technical Background
	Automated Feature Location
	Pro-Active Annotations
	Embedded Feature Annotations
	FeatRacer

	Integration Concept of Git with Features
	Storing Feature Information
	Extending Git with Custom CLI Commands

	Methodology
	Enhancing the Git Extension Prototype
	Experiment Design
	Hypotheses and Variables
	Materials and Tasks
	Participants and Experiment Execution
	Analysis
	Mitigation of Unexpected Tool Behavior

	Results for the Prototype Improvement
	Analyzing User Feedback
	Issues Derived From the Feedback
	Concrete Changes to the Research Prototype
	New Command Names
	Manual Page and Web Documentation
	Git Feature Blame Implementation

	Results for the Experiment
	Task Correctness
	Completion Time
	User Preference
	Open Questions

	Discussion
	Answering RQ1
	Answering RQ2
	Threats to Validity

	Conclusion
	Thesis Outcome
	Current Limitations
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Blank Page

